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FOREWORD

document is Book 2, Part I of the Cycle _ Study Report and documents the

activities performed by MMC in support of the MSFC " " "N_S Systems and AvlomcsTeamsThis

The work was performed under NASA Contract NAS8 371-_3 between May 1991 and

January 1992. This study report was prepared by Manned Space Systems, Martin Marietta

Corporation, New Orleans, Louisiana for the NASA/Marshall Space Flight Center.
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This report was prepared by Martin Marietta Manned Space Systems in New Orleans. The effort
was conducted under Contract NAS8-37143 S huttle-C for the period July 1991 through December
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1.0 Summary
An assessment was conducted to determine the maximum LH2 tank stretch capability based

on the constraints of the manufacturing, tooling and facilities at the Michoud Assembly Facility in
New Orleans, Louisiana. The maximum tank stretch was determined to 5 ft with minor or no
modifications, a stretch of 11 ft with some possible facility modifications and beyond 11 ft
significant new facilities are required. A cost analysis was performed to evaluate the impacts for
various stretch lengths. Cost impacts range from $10 M to $130 M depending on the tank length.
For a tank stretch up to I I It, a cost impact of approximately $30 M is realized.

2.0 Problem

The reference NLS vehicle configurations have been established to develop preliminary design data
to determine potential concept risks and "show stoppers". The NLS 2 configuration is a thrust and
propellant poor vehicle and as a result would like to have more propellant than the baselined 5 ft
stretch in the LH2 tank currently configured. A system level trade study at Level II has reqvested
the cost impacts of increasing the tank beyond the 5 ft baseline. A trade study will be conducted to
recommend the vehicle propellant volume to optimize performance and cost.

3.0 Objective
The objective of this study is to determine manufacturing, tooling and facilities data base to

support a cost impact analysis for MAF tank Stretch.

4.0 Approach
The approach for this study is to develop a parametric impact statement for tank stretch up to

25 fl in length. Manufacturing, tooling hardware and facilities impacts are evaluated beyond the 5 fi
baseline stretch. A cost analysis has been performed considering current El" processes and
technology and peak production rate of 3 HLLV's, 8 1.5 Stage's and 10 ET per year.

5.0 Results
The results of this study indicate the 5 ft stretch does not have an impact to the facilities. Tank

stretch up to 11 ft is possible with modifications to the Cell E Internal LH2 Clean and Iridite, Cell
A Core Tankage Vertical Stack, Cell P External Clean & Prime, LI.-12Major Weld Assembly, and
LH2 Proof Test in Building 451. Beyond the 11 fi stretch, a new proof test facility, a new Cell A
at 12 ft and new cell E at 17ft are required.

6.0 Conclusions & Recommendations
The results of this study have been provided to the Level II studies to be integrated into the

Task#4 System Architecture Options Study at JPO.

7.0 Supporting Data
The following attachments listed in Section 8.0 are included to provide detailed information

relative to the Core Tank Stretch Study.

8.0 Attachments

Attachment 1 - NLS Core Tankage Tank Length Stretch Study, 22 November 1991
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NLS AVIONICS FLIGHT SOFTWARE

Contract Report

NASA's National Launch System Launch Vehicle Level III SRD require
the NLS Avionics to have a distributed processing system managed
by the Avionics Flight computer. All Avionics Flight and Ground

software is required to be developed according to a standard
software lifecycle that is being defined in the Level III NLS

Software Management Piano

Also, the Data Management System is required to provide adequate
margins for software requirements and design growth. These

margins are required to be applicable to memory, CPU utilization,
timing and throughput. As a minimum, at least 75 percent margin is

required to be available at the end of the Flight Software PDR. At
least 60 percent is required to be available at the end of the Flight

Software CDR. At least 50 percent margin is required to be
available at software acceptance.

Nine tasks were defined to perform trades and studies to determine

the best approach to meet the NLS Avionics system requirements.
The tasks are:

I •

2.

3.
4.

5.

6.
7.

8.

9.

Independent Software Verification and Validation

Software Sizing and Timing
Ada Software Development Environments

Common Software Development Environments

Software Development Automation

Standard Software Language
Reusable Shuttle Software

Technologies For Eliminating Generic Software Faults
Software Policies and Standards



Each task was supported by Martin Marietta's Manned Space System
in a lead or support role. In the tasks where lead role support was

provided, supporting data was required and provided. In the other
tasks, supporting data was also provided.

An average of three telecons per week was supported, and meetings
were attended in Huntsville at MSFC in support of the NLS trades.

Listed below is the data provided, in support of NLS Avionics

requirements definitions. Data is listed by the task supported.
Also, attached support documentation is included.

M-18S IRAD Presentation

Ada Timing Data

NLS Sizing Estimates
NLS Avionics Functional Decompositions

Artificial Intelligence ADAS Report
MMMSS ESO Software Development Methodologies
Software Productivity Consortium CASE Tool Evaluation

Supporting results and data provided was very informative, and used

to develop and baseline NLS Avionics Software requirements.
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April 29, 1991

The following Software Productivity. Consortium document is enclosed:

• I990 Boeing Pilot Project Final Report

SPC-91095-MC, Version 01.00.01, April 1991

The 1990 Boeing Pilot Project Final Report describes the joint 1990 Boeing-Software

Productivity Consortium pilot project which evaluated capabilities and limitations of current

automatic code generation tools as they applied to the development of real-time, embedded

avionics software and as they related to the Synthesis process.

"/"he primary purpose of this pilot project was to understand the capabilities and limitations

o- curry'hi automatic cod,".. ...cneration technolor'v_,present in products that specifically, address

ti,a £_,:_::in of control systems. Secondary project concerns were focused on the relationships

b_twcen the control systems' domain products and other software development products, and

on und'.'rs_anding how the evaluated products related m aspects of the Synthesis process•

Addition::]])', this pilot project developed an evahiation approach which consisted of

¢st:_blishing goals for the evaluations, selecting specific tools based on selection criteria,

est;:blishing an evaluation process, and using the evaluations to derive conclusions about the

state of fix= tcchnoloD' of these tools.

t'i.:'ase co:::pct ]',_s. Gerr,' Brewer, Administrator, TechnoloD' Transfer Clearinghouse, at

(703)742-721 ] if you have any questions or require further information regarding this deliver3".

Disilih:;:i"I: d: ._

.... '- l-;_ L-I
r._!..-.;_;-,u'.l:',n f:,;;_v:" [-r...T [':'J

lee!,'dCt; ..R;i ",i.'.::.r .f ::maid [_'] [._

"TT.',.__,'.:.m'.__. [7"3 [L_

" ('nv:': I_:t:'r o:,_y

Sincerely,

.._.&7._..:._--_ z / _

Claude DeIFoss::
Vice Tresid,at
"l'ecl'mt_lo;,.-.¢"l-ransf-_r
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MARTIN MARIETTA

D. Hodges
1 2/4/9 1

Shuttle C Funtions

A functional decomposition of these STS functions,

Shuttle C SRD, redlined STS FSSRs, and HAL/S code

were used in developing the Shuttle C estimates

shown on the previous page.

. Guidance

Staging
Insertion

Abort Targeting

. Navigation
User Parameter Processing
State Propagation

, Flight Control
Digital Autopilot

Steering
Attitude Processor

-..,.t,r

. Sequencing
Launch Countdown

SSME Operations

Propellant Dump

. Subsystem Operating Programs
MPS TVC

SSME

Rate Gyro
RCS Command

, Redundancy Management
IMU

Rate Gyro



o Systems Management
Data Acquisition
Fault Detection and Annunciation

Special Processes

o Vehicle Utility

Data Acquisition

Launch Data Bus

Test Control Supervisor

° Automated Crew Functions

Switch Activations

OPS 1 Load

10. Systems Control

System Initialization

Bus Management

k

11o Operating System
I/0 Services

Multitasking Priority Preemptive Scheduling

Redundant Computer Operations
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A Report
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MODELS
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Di!._FFREN T soFTWARE DEVELOPMENT

Thu-Phong M. Nguyen
Ma,'icr_a Manned Spad;_ Systems

Martin E.S.O 89619

October 12, I990
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Avionics Diagnostic System (tLDS)

The ADS prototype demonstrates the application of knowledge-b:_sed system technology to

the diagnosis and repair of avionic systems. ADS is meant to work with an automatic test

equipment (ATE) but the current version queries the user for all status information.

Reasoning Methods for Automated Diagnostics

The ADS is an expanded version of the earlier Telemetry/Analysis and Diagnostic (TAD)

program which used a rule-based reasoning approach. TAD used a backward chaining

(go:d-driven) rule-base for diagnosis and a forward-chaining rule-base to identify an

appropriate problem solution.

Rule-based reasoning has some drawbacks which are most evident in a diagnostic

application. First, rule-based diagnostic systems have a fixed range of capability beyond

which novel fault situations cannot be handled. Secondly, the maintenance of a rule-base

system becomes increasingly difficult as the size grows and electronic systems tend to

require larger knowledge-bases.

One alternative to the difficulties of rule-based reasoning is a technique called Model-Based

Reasoning. In this technique a model of the entire system is built which describes tile

funetionali',y of all working components. To some extent this model can simulate the entire

system, including system behavior under fault conditions. Diagnosis is achieved, in simple

tenr_s, by changing the simulation parameters to match the observed symptoms, at which

point the model should correspond to the faulty state of the system.

OPJG/NAL P_OE !5
OF POOR QUALITY



Model-based reasoning can theoretically diagnose all error situations, even errors that have

not been explicitly encoded in the pro_am, thereby surpassing the fixed capability of rule-

base systems. In addition, model-based reasoning can diagnose increasing larger systems

without extensive rework of the knowledge-base. This follows from the fact the

knowledge is stored as models of individual components; larger systems will require more

component models but the models themselves remain unchanged.

One drawback to model-based reasoning is the relatively long time required to find a

solution. Because the model is effectively a simulation of the avionic system it requires a

_eat amount of computation. Here the rule-based system has an advantage: because it

explicitly lists all the "known faults it can quickly concentrate the search effort to a likely

problem ,area.

Fault-based Diagnostics

Fault-based diagnostics fall between model-based reasoning and rule-based reasoning.

Individual components are modeled, but only with respect to causing or propagating fault

symptoms. The avionics system is described in the computer as a network of component

models. The connectivity of the model is analyzed to find all symptoms associated with

particular faults and vice-versa.

In addition to the general fault-symptom connections, the fault-based system allows

specific, rule-like connections fiom fault to symptom which correspond to expert

knowledge about expected fault occurrences. These special connections speed up the

diagnostic process for familiar probit, n_s, while allowing the general reasoning to operate

for other faults which have not _ :en explicitly described.



Implementation

TheADS prototypewaswritten in Knowledge Craft on a Symbolics 3620 Lisp Machine.

The program uses schemata to describe and components and their connectivity. The

reasoning system was originally written in CRL-OPS (Knowledge Craft's version of OPS)

but has been replace by a small Lisp program.
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TERMINATOR DEFINITIONS (EXTERNAL I/Fs)

1.0 Flight Operations

The flight operations terminator includes all activities that interface with the

NLS flight avionics functions after liftoff of the integrated launch vehicle. The

interface between flight operations and the NLS flight avionics functions will be

via RF links from either ground tracking stations, TDRSS, the SSF, or GPS. Flight

operations functions will include mission control center operations, ground
communication and data processing networks, tracking systems, the GPS, mission
monitor and control activities on the SSF, and uplink of data loads/reloads

including telemetry format changes and logic changes.

2.0 Ground Operations

The ground operations terminator includes all activities (except range safety)
that interface with the NLS flight avionics functions prior to vehicle liftoff.

These activities occur during individual stage manufacturing checkout,
integrated launch vehicle assembly and test, preflight checkout, and countdown.

They also include the ground portion of Vehicle Health Management.

The primary physical and electrical interface between ground operations and

NLS launch vehicle avionics will be through one or more umbilical connectors. _,_

This interface will include a data bus/network connection for interchange of data
and commands and cables for connection of ground electrical power. Direct or
indirect RF communication may be performed during prelaunch checkout to
verify RF communication capabilities.

3.0 Range Safety System

The range safety terminator includes all range safety activities that interface
with the NLS flight avionics functions during ground assembly, integration,
countdown, launch and the ascent mission phase prior to separation of the

CTV/US from the core booster.

One of two interfaces between range safety and the NLS launch vehicle avionics

will be through RF communication to a transponder on the launch vehicle which
assists tracking radars. The second RF interface consists of the ground
transmitter which issues the destruct commands. Additional vehicle health

status information will be obtained from launch vehicle telemetry via

ground/flight operations. During preflight tests, range safety functions will
include verifying correct range safety component performance and safe/ar

status.

4.0 Environment



Included are the natural phenomenon of wind, rain, lightening, temperatures,
salt air, sand, cosmic radiation, and other radiations. It also includes a vacuum

(or near vacuum), dynamic pressures during ascent, shock, vibration, thermal,

angular acceleration, translational acceleration, sun presence, earth presence, etc.

5.0 Payload

The payload terminator includes ali payload activities that interface with the

NLS flight avionics functions during ground assembly, integration, countdown,

launch and all mission phases prior to separation of the payload(s) from the
CTV/US.

The primary physical and electrical interface between payload(s) and the NLS

launch vehicle avionics will be through one or more umbilical connectors located
on the payload carrier. This interface may include a data bus/network

connection for interchange of data and commands and cables for connection of
electrical power.

6.0 Thrust Vector Control Systems

The Thrust Vector Control Systems include the on-board hardware responsible

for the physical change in STME and SSRB nozzle position. Included in the

Thrust Vector Control Systems are the controllers and the actuators. The

interface with the avionics includes a data bus and power bus.

7.0 Shuttle

The Shuttle terminator includes all Space Transportation System (STS) activities
that interface with the CTV flight avionics functions when the CTV is berthed in

the STS payload bay.

The primary physical and electrical interface between the STS and the CTV
avionics will be through one or more umbilical connectors located on the CTV

and in the STS 15ayload bay. This interface may include a data bus/network
connection for interchange of data and commands and cables for connection of

electrical power.

8.0 SSF

The SSF terminator is the planned Space Station Freedom interfacing with the

CTV for rendezvous and capture. The SSF provides electrical power to a berthed
CTV and hardwire command and data links. (RF communication between the

CTV and the SSF are considered a part of Flight Operations.



$
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9.0 Propulsion System

The Propulsion System includes the STMEs, the SSRB engines, CTV engine(s),

secondary propulsion systems,STME controllers, propellant management, and

gases. The STME will interfacevia a data bus and power bus. The SSRBs will

interface through an interface device in the core stage avionics. This interface

will accommodate power and commands to the SSRBs and data for downlink

from the SSRBs. This interfaceis predefined.

I0.0 Structures and Mechanisms

The structures and mechanisms terminator includes all structures and

mechanisms activitiesthat interface with the NLS flight avionics functions

during ground assembly, integration,countdown, launch and during all mission

phases.

The avionics interface will consist of drivers for ordnance devices, solenoids,

lights, sensors to measure structural conditions such as stress and temperature,

as well as sensors to detect mechanism activation, etc.

The structures and mechanisms functions may include shroud jettison, stage

separation, SSRB separation, and antenna deployment.



18:32:05 6 Nov 91 nls_avionics Data Dic:ionary Entr_ fo_cmds page 1

',Lcmds (control flow) =
"Flight Operations Commands are all commands to the vehicle through RF
link after liftoff. These commnads may be sent with or without
encryption or encoding, as required.*.

18:16:50 6 Nov 91 nls_avionics Data Dictionary Entry fo_response page 1

fo_response (data flow) =
"Flight Operations Response includes responses to Flight Operations
Commands.'.

16:55:08 6 Dec 91 nls...avionics Data Dictionary Entry fo..data page 1

fo data (data flow) =
"Flight Operations Data includes data being sent to the vehicle, as well
as data coming from the vehicle. Data being sent to the vehicle includes
GPS data and table loads/reloads for any purpose to CTV or Upper Stage.
These data loads may also be telemetry format changes and logic changes
to some on-board processor (including memory loads). Data coming from
the vehicle will consist of vehicle data, and may include payload
telemetry data. The vehicle data may include flight critical data,
operational flight instrumentation data, and development flight
instrumentation data.*.



18:17:19 6 Nov 91 his_avionics Data Dictionary Entry prop_creels page 1

prop cmds (control flow) -
"ProDulsion Commands are all commands to the STME Engine Controllers,
to the ASRBs, to the seconda_ propulsion systems, and to the
proDulsion valves of the attittcle control, or Reaction Control
System. PropuLsion Commands also includes all commands for fluid
and gas managemenL'.

18:17:36 6 Nov 91 nls..avionics Data Dictionary EnW prop_data page 1

prop_aata (data flow) -
"ProDulsion Data consists of all health, status, mode, and all other data
to be inclucled in the vehicle RF ¢lownlink telemetry.'.

18:17:49 6Nov91 nLs._avionics Data Dictionary Entry prop_fstatl page 1

proDJstatl (data flow) ,,
"Propulsion Fault Status includes all pertinent fault-related data
generated by the health monitoring function of the various
propulsion subsystems.'.

17:47:28 4 Dec 91 nls_avionics Data Dictionary Entry prop_power page 1

prop_power (data flow) =
"Propulsion Power is electrical power provided by the avionics
system to the propulsion systems.'.



18"18:05 6 Nov 9i nls...avionics Data Dictionary Entry sm_cmds page 1

sm cmds (control flow) =
"Struc_res ax¢l Mechanisms Commands include all ordnance commands,
latctl commands, and all commancJs to control docldng lights.'.

18:18:18 6 Nov 91 nls..avionics Data Dictionary Entry sin_data page 1

sm..clata(dataflow)-
"Structures and Mechanisms Data incluaes separation data, ordnance data,
position data, and all other data to _ incJudsd in the vehicle RF
cJownlink telemetry.'.

18:18:29 6 Nov91 nls_avionics Data.Dictionary Entrysm_fstat page 1

sm_fstat (data flow) =
"Structures and Mechanisms Fault Status data includes all pertinent
fault-related data generated by any health monitoring function of
a vel_icte structure, mechanism, or ordnance.'.

17:42:18 4 Dec 91 nls_avionics Data Dictionary Entry sm oower page I

sin_power (data flow) -
"Structures and Mechanisms Power is electrical power provided by
the avionics system to structures, mechanisms or ordnance.'.



18:18:58 6 Nov 91 nls_avionics Data Dictionary Entry sts ctv cmds page 1

sts ctv cmcls (control flow) =
"STS C'IV Commands are all harclwired commands from the STS to the CTV.
(Note: RF commands are considered to be Flight Operations Commands).*.

\

18:19:13 6 Nov 91 nls_avionics Data Dictionary Entry sts_ctv_respo page 1

sts ctv_response (data flow) =
"STS CTV Response includes responses to STS C'I'V Commands.*.

18:19:2.6 6 Nov 91 nls_.avionics Data Dictionary Entry sts ¢tv data page 1

sts ctv data (data flow) -
*STS CTV Data is all hardwired data from CTV to the STS, or from STS
to the CTV.'.

18:19:39 6 Nov 91 nls_avionics Data Dictionary Entry sts_ctv._servi page 1

sts ctv services (control flow) =
"STS CTV Services are any services, following berthing of the CTV with
the Shuttle, which may be required to provide power to CTV subsystems,
or to effect other actions necessary to modify the CTV environment.'.



18:19:57 6 Nov 91 nls_avionics Data Dictionary Entry ssLctv_cmds page 1

ssf._ctv_cmds (control flow) =
"SSF CTV Commands are all hardwired commands from the SSF to the CTV.
(Note: RF commands are considered Flight Operations Commands).*.

18:20:14 6 Nov 91 nls_avionics Data Dictionary Entry ssf_ctv_respo page 1

ssf_ctv_response (data flow) =
"SSF CTV Response includes responses to 8SF C'I"V Commands.*.

18:20:32 6 Nov 91 nls_avionics Data Dictionary Entry ssLctv_data page 1

ssf ctv data (data flow) =
"SSF C'IV Data is all hardwired data from the CTV (including payload, if
applicable) to the SSF, or from SSF to the C'I"V.°.

18:20:57 6 Nov 91 nls_avionics Data Dictionary Entry ssLctv_servi page 1

ssLctv services (control flow) =
*SSF CTV Services are any services, following berthing of the CTV with
the SSF, which may be required to provide power to CTV subsystems, or
to effect other actions necessary to modify the CTV environment.*.



18:24:34 6 Nov 91 nls_avionics Data Dictionar_ Entry tvc. cmds page I

tvc_cmds (control flow) =
"The TVC Systems include the TVC Subsystems for all NLS gimbaled engines
(e.g., STME, ASRB, etc.). A TVC Subsystem consists of the controller(s)
and the actuator(s).

TVC Commands are all commands to _e TVC controllers. These include
commands to gimbal the engines to specific positions, mode commands,
etc..'.

18:21:34 6 Nov 91 nls_.avionics Data Dictionary EnW tvc data page 1

tvc_data (data flow).
•TVC Data includes, but is not limited to, the following: all "rvc
measurements which are to be included in the vehicle RF downlink or
harOwired telemetry, data necessary for performance assessment, checkout
data.'.

18:21:54 6 Nov 91 nls..avionics Data Dictionary Entry tvc fstat page 1

tvc fstat (data flow) =
•_I'VC Fault Status includes all pertinent fault-related data generated
by the health monitoring function of the various TVC Subsystems.'.

17:47:03 4 Dec 91 nls_avionics Data Dictionary Entrytvc..power page 1

tvc_.power (data flow) =
•Thrust Vector Control Power is electrical power provided by the
avionics system to the TVC systems.'.



:8:06:55 6 Nov 91 nls_avionics Data Dictionary Entry envir.ci_ar page I

envir char (data flow) =
"Environmental ChatacterislJcs are all environmental characteristics used
by tt_e Avionics System in performing its various functions. These
characteristics may be any of the following: temperatures, pressures,
acceleration, changes in at1_ude, wind, shock, vibration, in and out of
sun, etc.. This data may also be includecl in RF or hardwired ctowrdink
telemetry.'.

18:09:4.8 6 Nov 91 nls_avionics Data Dictionary Entry flight..term page 1

flighUerm (control flow) =
"Flight Termination is a pair of commands to dest_'oy the NLS elements
(core, ASRB, C'IV, US), as applicable. The commands am sent to the
on-board Range Safety System via its own RF link.'.

17:53:17 4 Dec 91 nls_avionics Data Dictionary Entry track_signal page 1

tracksignal (data flow) =
"Tracking Signal is a tracking beacon/signal generated by the on-board
Range Safety System during ascent in response to a ground-generated
signal. The Tracking Signal assists the ground Range Safety
function in determining whether the vehicle is violating trajectory
limits.'.



18:22:20 6 Nov 91 his_avionics Data Dictionary Entry payload_crnds page 1

payload_cmds (control flow) =
*Payload Commands are all commands from an NLS element to an attached
payload.*.

v

18:22:35 6 Nov 91 nls_avionics Data Dictionary Entry payload_respo page 1

payload_response (data flow) =
"Payload Response is a response from the payload as a direct consequence
of having received a Payload Command.'.

18:22:46 6 Nov 91 nls...avionics Data Dictionary Entry payload.data page 1

payloaddata (data flow) =
"Payload Data includes data being sent to the payload, as well as data
coming from the payload. Data being sent to the payload may include
navigation updates. Data coming from the payload may include flight
critical data, operational flight instrumentation data, and
development flight instrumentation data.'.

18:22:58 6 Nov 91 nls._avionics Data Dictionary Entry payioad_servi page 1

payload_services (control flow) =
"Payload Services include all services which may be required by the
payload. These may include electrical power, environmental control,
and discretes which may be used by the payload to effect various
functions.'.



18:30:42 6 Nov 91 nls_avionics Data Dictionary Entry go_cmds page 1

go_cmds (control flow) =
"Ground Operations Commands are all commands, including simulated
commands, to the vehicle whether by RF-link, special cable, or via a
test connector. These commands may be sent with or without encoding
or encryption.'.

18:27:39 6 Nov 91 nls_avionics Data Dictionary Entry go_response page 1

go..response (data flow) =
"Ground Operations Response includes command responses and is effected
via a copper path or test cable/plug during manufacturing checkout and
prelaunch checkout (not on-pad checkout).'.

18:14:09 6 Nov 91 nls..avionics Data Dictionary Entry go_data page 1

go_data (data flow) =
"Ground Operations Data includes data being sent to the vehicle, as
well as data coming from the vehicle. Data being sent to the vehicle
includes data loads for any purpose - clay-of-launch wind profiles,
programmable telemetry formats, mission or test characteristics and
limits, or logic changes normal to any on-board processor (including
memory loads). Normal data coming from the vehicle may include flight
critical data, operational flight data, or development flight instru-
mentation data. The data will be in the selected programmable format as
commanded (loaded) and set in the Telemetry and Command subfunction. °.

18:15:35 6 Nov 91 nls_avionics Data Dictionary Entry go_services page 1

go_services (control flow) =
*Ground Operations Services are those services including electrical power,
air or GN2 purge, and air conditioning needed before launch.'.
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3.1.1 Vehicle and Data Management

The Vehicle and Data Management function performs executive monitoring and
control of the on-board functions. The V&DM function shall control the

operational mode of all other on-board functions. The on-board system service

functions are considered part of V&DM. V&DM performs its own health

monitoring and self-test.

3.1.1.1 Mode Control (Test Control and Sequencing)

Mode control defines the vehicle mode or mission phase of the vehicle

software (test, prelaunch, launch, ascent, separation, coast, payload

insertion, on-orbit checkout, rendezvous, capture, deorbit, etc.), issues

sequential commands from the appropriate data load(s) and issues time

dependent commands. Mode control is responsible for CAM enable/disable

and is the basic control mode and software for all vehicle operations.

3.1.1.2 Command Processing and Distribution

Command Processing and Distribution verifies that commands received

from external sources (including stored program commands) are valid for
the current vehicle mode or mission phase. Commands which would resul_

in a vehicle mode change are then passed to the Vehicle Mode Manager
subfunction. Other commands are interpreted and either sent to the
functions (destinations) for which they are intended or executed as

appropriate

3.1.1.3 Vehicle Timekeeping

Vehicle timekeeping monitors the master time pulse and maintains and

updates as necessary the current time for the vehicle. This function is also

responsible for synchronizing the other timing functions including other

processors to assure the vehicle units do not become skewed.

3.1.1.4 Vehicle Health Monitor

Vehicle Health Monitor correlates the vehicle health status from all

subfunctions, remains cognizant of the status of similar signals from the

terminators, and relays information to other subfunctions that may be
affected. Vehicle Health Monitor is also responsible for hazard detection.

It shall determine failure condition and shall notify other functions or

subfunctions that a hazard has been detected. The Vehicle Health Monitor



also remains cognizant of the VDM hardware and software and notifies

mode control when a failure is detected.

3.1.1.x Operating System Services

3.1.1.y Bus Management
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3.1.3 Telemetry and Command

The Telemetry and Command (T&C) function shall provide timely, accurate and
secure exchange of command data to the vehicle from the external interfaces

and the transmission of telemetry data to these external interfaces, i.e. all uplink

and downlink. The function shall control all RF links except range safety and

GPS. The function shall perform its own health monitoring and self-test.

3.1.3,1 Formatting Telemetry

The formatting telemetry subfunction transforms the instrumentation and

computer-generated signals for downlink. This formating is based on the
or programmable format that has been commanded by the VDM or an
external interface (STS, SSF, ground).

3.1.3.2 Storage

Storage is the on-board medium (hardware and software) for storing data
as it is received by the Telemetry and Command function. The storage
subfunction stores all vehicle telemetry data until required by the

telemetry formatting function. This subfunction acquires data from the

various systems by monitoring the data bus(es). This function also gets

data from the instrumentation function. Commands which are uplinked for
later execution are also stored.

3.1.3.3 Receive

The receive subfunction demodulates the RF signals from an external

source and does a hardware check for validity.

3.1.3.4 Transmit

The transmit subfunction modulates the formatted telemetry downlink

data for transmission by cable or RF link. The transmit subfuncdon also

performs data encryption and encoding if required.

3.1.3.5 Decode

The decode subfunction removes encoding on uplink data received, and if

required, also does decryption. This subfunction also does error detection
and correction. The data is then forwarded to the addressed function via

the VDM.

3.1.3.6 RF Link Control

The RF link control subfunction confieures the on-board transmitters.



3.1.3.7 Instrumentation

The instrumentation subfunction collects sensor data and performs signal
conditioning as required to process and distribute all onboard
instrumentation data.

3.1.3.8 T&C Health Management

The T&C Health Management subfunction assesses the health of and

reconfigures, if required, the T&C Function. The T&C health status is

reported to the VDM function.
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3.1.4 Navigation

The Navigation function shall determine the rotational and translational states of

the vehicle during all mission phases. The navigation function shall have the

ability to update these states.

3.1.4.1 Inertial Measurement

The inertial measurement subfunction measures inertial angular and
translational accelerations.

3.1.4.2 Sensor Compensation

Sensor compensation converts raw inertial measurement acceleration

information into acceleration in engineering units, which is aligned to the

sensor coordinate frame. Raw inertial measurement data is multiplied by

a scale factor, added to a bias, added to acceleration dependant correction,

and corrected for measured manufacturing misalignments of sensors. This
is done for both translational and rotational data. The rotational data is

also corrected for sculling effects and coning effects. The gyro biases are

updated based on the pad alignment process.

3.1.4.3 State Vector Computation/Update

The state vector computation/update subfunction updates the vehicle

states with IMU compensated sensor data, GPS navigation data and other

navigation sensor data as applicable. The translational state vector is

updated by converting the compensated data to inertial coordinates and
adding it to the existing inertial state vector. The rotational states are

updated by incrementing the current states with the compensated data.

3.1.4.4 GPS Processing

The GPS processing subfunction contains the Global Positioning System

(GPS) antennae, pre-amplifiers and receiver. These elements perform the

acquisition and tracking of the GPS. The GPS data is processed and

provided for state vector computation/update.

3.1.4.5 On-Pad Alignment and Sensor Bias Estimation

The on-pad" alignment and sensor bias estimation subfunction performs

acceleration coupled leveling and azimuth alignment needed to initialize
the vehicle rotational states. (During pad alignment, the steady state

angular rate on the IMU is earth rate. Alignment measurements different
from earth rate are due to gyro bias error, so the gyro bias compensation



utilized during flight is updated to correct for this known error.) This

subfunction also determines the correct navigation element biases and

updates the sensor compensation biases utilized during flight. This
subfunction also supports the health management subfunction by

facilitating IMU performance monitoring on the launch pad.

3.1.4.6 Other Navigation Sensor Processing

The other navigation sensor processing subfunction includes other

navigational sensors (e.g. sun sensors, star trackers, horizon sensors).used

to update the rotational states for execution of all CTV operations. The
sensor data is processed and provided for state vector computation/

update.

3.1.4.7 Navigation Health Management

The Navigation Health Management subfunction provides continual

management of the IMU, GPS Receiver and antennae, CTV Operations, and
the navigation software tasks. The Navigation health status is reported to
the VDM function.
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3.1.5 Guidance

The Guidance function shall generate flight steering data based upon

navigational inputs. The guidance function shall perform the calculations

required to achieve the predetermined orbit, orbital maintenance, and
rendezvous. The Guidance function shall be responsible for trajectory

modifications in response to propulsion system performance. Guidance shall

perform its own health monitoring and self-test.

3.1.5.1 Guidance Prediction and Analysis

The Guidance Prediction and Analysis subfunction predicts the end-of-
stage state vector based on current state vector and expected performance

to the end of the burn. For the open loop unguided portion of a mission,

open loop pitch and yaw commands are extracted from memory and used

to determine pitch and yaw rates. For the closed loop guidance portion of

flight, predicted end of stage conditions are predicted for the Engine Cutoff

Timing subfunction and the Steering Commands/Misalignment Corrections
su bfunction.

3.1.5.2 Engine Cut Off Timing

Based on the predicted end of stage conditions from the Guidance

Prediction and Analysis subfunction, the engine cutoff timing will be

determined by this subfunction.

3.1.5.3 Translational Thruster Firing

The Translational Thruster Firing subfunction generates thruster on-times

required for on-orbit operations. These translational delta velocity burns

are required for CTV orbit adjust, proximity operation, and deorbit.

3.1.5.4 Steering/Misalignment Corrections

The Steering/Misalignment Corrections subfunction generates steering data
based on Guidance Prediction and Analysis subfunction results. It

performs steering misalignment correction to remove bias errors from the

steering data. Based on the end-of-stage stage vector and the current
state, this routine determines the optimal steering to remove the error by

the stage end time,

3.1.5.5 Guidance Health Monitor



The Guidance Health Monitor subfunction collects guidance health status '-

be used by the VDM function.
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3.1.6 Flight Control

The Flight Control function shall maintain vehicle stability, provide adequate
command response, and provide active loads reduction. The Flight Control
function shall generate commands for the control effectors and thrusters using

guidance steering data and flight control sensors. Flight Control shall also control
and monitor the operation of the thrust vector control actuators. Flight control

shall perform its own health monitoring and self-test.

3.1.6.1 Gain Computation

The Gain Computation subfunction consists of algorithms that select, using
sensed vehicle velocity, acceleration, position, and time, current value of

gains and filter parameters for use in other Flight Control subfunctions.

3.1.6.2 Sensor Data Acquisition & Filtering

The Sensor Data Acquisition and Filtering subfunction acquires flight

control sensor data. These data and navigation function outputs are

filtered to reduce noise and prevent aliasing.

3.1.6.3 Compensation Filtering

The Compensation Filtering subfunction modifies autopilot signals to

achieve control system requirements.

3.1.6.4 Compute Gimbal Angle Commands (Autopilot)

The Compute Gimbal Angle Commands subfunction combines gain

computation, compensation filtering, wind load alleviation, sensor filtering,
and engine actuator mixer to compute necessary gimbal angles.

3.1.6.5 Wind Load Alleviation

The Wind Load Alleviation subfunction consists of algorithms which reduce

structural loads and gimbal angles in the presence of winds aloft.

3.1.6.6 Engine Actuator Mixer (TVC Commands)

The Engine Actuator Mixer subfunction converts body axis engine

commands to engin¢ axis commands, taking into account individual engine

and propulsion module status.

3.1.6.7 Compute RCS Commands (Autopilot)

The Comoute RCS Commands subfunction verforms the thruster selection



3.1.6.8 Flight Control Health Management

The Flight Control Health Management subfunction subfunction determine+ _'_

the health of the Flight Control system including any reconfiguration.
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3.1.7 Propulsion Control

The Propulsion Control function shall control and monitor the propulsion
systems. This function shall include engine start-up, shut down, thrust level
setting events; propellant management; gas system management; and thruster

valve control. Propulsion Control shall perform its own health monitoring and
self-test.

3.1.7,1 Engine Controller Commands

The Engine Controller Commands subfunction commands the engine
controller to start, stop, select thrust level, and to inhibit shutdown etc.

(The engine controller passes signals to the engine in the form of

commands to control functions such as valves, igniters, etc. to start, stop,
select thrust level, etc.) The engine controller command subfunction uses
data from the Propulsion Health Management subfunction to determine
required engine controller commands.

3.1.7.2 Manage Fluids (Pressure/Tanking)

The Manage
to actuate valves for prelaunch, engine conditioning and mission operat
(fill/drain valves, pre-pressurization valves, etc.). This subfunction

controls propellant tank pressurization and venting. Propellant pressures,
temperatures and fluid level measurements are sent to the Propulsion

Health Management subfunction, and to the T&C function for transmission

to the ground.

Fluids subfunction receives commands from the VDM functir,',

V

3.1.7.3 Manage Gases

The Manage Gases subfunction receives commands to distribute helium for

prelaunch purges during final launch countdown. This subfunction also

manages the distribution of valve actuation gas for the main propulsion

system as required during mission operations.

3.1.7.4 Secondary Propulsion Control

Upon command from the Flight Control function, the Secondary Propulsion
Control subfunction arms/controls the secondary propulsion system.

(Secondary propulsion consists of SSRBs, CTV engine(s) and controller(s),

Upper Stage engine(s) and controller(s), RCS and deorbit engines.)

Thruster, valve, pressure, and temperature status is provided to the

Propulsion Health Management subfunction.



3.1.7.$ Propulsion Health Management

The Propulsion Health Management subfunction monitors the propulsion

subsystems and assesses health of the propulsion system. This function
monitors and evaluates engine controller status, valve open/closures,

pressures, temperatures, fluid levels, and recognizes that an engine has
been shut down by the engine controller. Propulsion status is provided to

the VDM and the T&C functions.

..
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3.1.9 Mechanisms and Ordnance Control

The Mechanisms and Ordnance Control function shall control vehicle

mechanisms, verify vehicle interfaces, and initiate devices necessary for staging
or other ordnance activated events. Mechanisms and Ordnance shall also control

any interfaces between the vehicle and other vehicles with which it may

rendezvous. Mechanisms and Ordnance shall perform its own health monitoring,

self-test and related subsystems health monitoring.

3.1.9.1 Mechanisms

The Mechanisms subfunction consists of the automatic or manual operation
of grappling devices on one vehicle required to attach it to or to release it
from another vehicle with the appropriate docking adapter. This

subfunction also operates any mechanical devices (such as latches) which
exist on the integrated launch vehicle.

3.1.9.2 Separations

The Separations subfunction controls the opening or severance of holding

devices and the activation of any forcing devices required to move a
vehicle component into a planned position. The Separations subfunction

initiates the following operations:
(a) TO umbilical and holddown release

(b)
(c)
(d)
(e)
(0

Booster separation

Shroud separation
Payload separation

CTV antenna deployment
Strongback deployment.

3.1.9.3 Mechanisms and Ordnance Health Management

The Mechanisms and Ordnance Health Management subfunction performs
out of limit detection of mechanisms and ordnance health and status

parameters, and if a problem occurs, automatically or by manual command
isolates the problem from the system so that nominal mechanisms and

ordnance operation continues. Mechanisms and ordnance health status is

reported to the VDM function.
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3.1.10 Electrical Power and Distribution (PMAD)

The PMAD function shall include the energy source and control and monitor the

distribution of electrical power to vehicle electrical loads. It shall control and

monitor energy sources as applicable, the transfer of electrical power between

power sources, and the power-up and power-down sequencing. It shall provide
necessary circuit protection and it shall meet and be compatible with the vehicle

fault tolerance requirements. PMAD shall perform its own health monitoring
and self-test.

3.1.10.1 Distribution

The Distribution subfunction shall apportion electrical power to the

individual loads and shall have the ability to apply or remove power to
individual loads.

3.1.10.2 Source Control

The Source Control subfunction shall apply or remove power to a bus as

well as change power sources on the vehicle, i.e. primary battery to
backup, or solar cell to battery, etc.

3.1.10.3 Power Changeover Control

The Power Changeover Control subfunction shall initiate and complete

power transfer between individual sources such as ground power to
vehicle power or CTV power to SSF power. It shall also provide any
necessary sequencing.

3.1.10.4 Source

The Source subfunction provides the main power point of origin, i.e.

batteries, ground power, fuel cells, etc.

3.1.10.S EPS Health Management

The EPS Health Management subfunction determines if the power system

is working properly and reports fault status to the VDM function.
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3.1.11 Environmental Control

The Environmental Control function shall respond to environmental conditions in

order to ensure that the avionics is maintained within acceptable thermal limits.

Environmental Control Shall perform its own health monitoring, self-test and

related subsystems health monitoring.

3.1.11.1 Thermal Control

The Thermal Control subfunction monitors and provides control of avionics

temperature during the mission. This will include both heating and cooling
of the avionics systems.

3.1.11.2 Environmental Control Health Management

The Environmental Control Health Management subfunction determines if

the Environmental Control system is working properly and reports fault
status to the VDM function.
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3.1.12 Payload Accommodations

The Payload Accommodations function shall control the interface with the

payload carrier. Special payload management or interfacing requirements are

decoupled from the basic operation of the Core Stage or Upper Stage systems

through the payload accommodations function. Requirements may include

telemetry formatting, sensor monitoring, power source and power switching, and

thermal management. The Payload Accommodations function shall provide its

own health monitoring and self-test.

3.1.12.1 Electrical Power

The electrical power subfunction is the independent and electrically

isolated power source dedicated to providing electrical power to the

payload. This subfunction also transfers the power being provided to the

payload from a ground source to an on-board source and turns the power
source on or off.

Z

3.1.12.2 Telemetry Data Collection

The Telemetry Data Collection subfunction provides the capability to

receive a serial data stream and/or discrete analog and digital

measurements from the payload and to transfer these measurements to

the Core or Upper Stage telemetry data for downlink.

3.1.12.3 Thermal Management

The Thermal Management subfunction applies adequate payload thermal

control by initiating vehicle roll maneuvers, etc. combined with proper

protection of the payload from Core or Upper Stage thermal effects by

using thermal blankets and heating/cooling.

3.1.12.4 Mode Control

The Mode Control subfunction issues commands to the payload which

cause the payload to take an action.

3.1.12.5 Payload Accommodations Health Management

The Payload Accommodations Health Management subfunction provides
monitoring and reconfiguration (if required) capability of the payload
accommodations hardware/software upon the detection of anomalous

behavior.
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3.1.13 Emergency Detection System

The EDS function shall independently monitor the overall operation of the Core

Stage vehicle for any conditions that could be hazardous to a manned payload.
If a hazardous condition is detected, the EDS function shall notify the crew. The

crew then has the option to activate the Launch Escape System (LES). Some
hazardous conditions may require that the EDS function be capable of

automatically activating the LES. The EDS function is only required in the Core
Stage when the payload is manned. The EDS function shall provide for its own

health monitoring and self-test.

3.1.13.1 Out of Limit Detection and Warning

The Out of Limit Detection and Warning subfuncfion determines if any EDS

health and status parameter(s) is/are not within a nominal operating
range, and if not, then notifies another vehicle function and/or ground
personnel of this condition.

3.1.13.2 Launch Escape System Activation

The Launch Escape System Activation subfunction automatically or by

manual command initiates an onboard sequence of events that cause

people to be safely removed from the launch vehicle, either before or afte,
launch, if an uncorrectable hazardous condition is detected.

3.1.13.3 Vehicle Safing

The Vehicle Sating subfunction inhibits all vehicle functions that may

present any hazard to people. Hazardous functions may include the
vehicle becoming propulsive or the performance of any ordnance event.

3.1.13.4 EDS Health Management

The EDS Health Management subfunction performs out of limit detection

and warning of EDS health and status parameters, and if a problem occurs,

automatically or by manual command isolates the problem from the

system so that nominal EDS operation continues.
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3.1.14 Collision Avoidance Maneuver

The CAM function shall monitor operation of the CTV when activated. When a
hazardous condition is detected, or on command, the CAM function will intervene

and maneuver the CTV to a safe position. The CAM function shall be an
intervention level function.

3.1.14.1 CAM Process and Control

The CAM Process and Control subfunction will maneuver the CTV to a

predetermined hold point which is at a safe distance from the target

vehicle. The CTV will remain at the hold point sufficiently long for the

ground/SSF controllers to decide if another proximity operation attempt is
advisable. The CAM Process and Control subfunction can respond to a

command for another attempt or it can respond to a command from the
ground/SSF to move to a second point further from the target. Should no

command be received within the designated period, the CTV CAM Process
and Control subfunction will assume that a communication failure has

occurred. The CAM Process and Control subfunction will automatically

maneuver the CTV to the distant point.

3.1.14.2 Vehicle Sating

The Vehicle Sating subfunction sends a sequence of commands to the

vehicle which will prevent it from actuating thrusters, ordnance or any

other potentially dangerous functions. This subfunction occurs once the
CTV is in a safe orbit which guarantees no recontact with the target
vehicle. CAM functions are not disabled.

P.
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3.1.15 Range Safety

The RS function shall ensure safe operation of the vehicle in the proximity of

personnel or valuable capital assets. The RS communications shall be

independent of the other avionics functions. RS shall provide for its own health
monitoring and self-test.

3.1.15.1 Tracking Beacon (or C-Band Transponder)

The Tracking Beacon subfunction consists of a C-band transponder which is

independent of all other NLS avionics functions,including Range Safety.

The transponder receives signals from the range and replies.

3.1.15.2 Receive Destruct Commands

The Receive Destruct Commands subfunction receives a ground-issued

destruct command and sends the appropriate hardware signals to the

pyrotechnic devices for activation. If applicable, this subfunction also
alerts the crew and the Emergency Detection System that the vehicle is

about to be destroyed.

3.1.15.3 Range Safety Sating

The Range Safety Sating subfunction receives notification from the VDM
function to safe the Range Safety Systems at appropriate times throughout

the mission. The pyrotechnic devices are disabled and power is removed
from the range safety hardware.

3.1.1S.4 Range Safety Health Monitor

The Range Safety Health Monitor subfunction shall consist of built-in test

equipment (BITE) for testing the pyrotechnic initiator controllers. This

function only executes prelaunch.



16:20:22 3 Dec 91 nis._avionics Data Dictionary Entry TC_control page 1

-C control (control flow) =
[TC_Uplnk_Cmd I TC_Mode],

16:29:16 3 Dec 91 nls_avionics Data Dictionary Entry EDS_control page 1

EDS control (control flow) =
[ED$_Uplnk_Crnd I EDS_Mode].

16:30:55 3 Dec 91 nls..avionics Data Dictionary Entry PAY control page 1

PAY control (control flow) =
[PAY...Uplnk_ Crnd I PAY..Mode],

16:32:41 3 Dec 91 nls..avionics Data Di_onary Entry ENV_control page 1

ENV control (control flow) =
[ENV_Uplnk_Cmd I ENV_Mode].

16:35:19 3 Dec 91 nls..avionics Data Dictionary Entry PROP_control page 1

PROP control (control flow) =
[PROP_Uplnk_Cmd (PROP_Model.

16:16:23 3 Dec 91 his_avionics Data Dic_onary Entry MO_control page 1

MO control (control flow) -
[MO_Uplink_Cmd I MC)_mode].



16:36:19 3 Dec 91 nls_avionics Data Dictionary Entry GUID_control page 1

GUID_control (control flow) =
[GUID Uplnk_Cmcl I GUID_Mode].

16:37:07 3 Dec 91 nls_avionics Data Dictionary Entry NAV.._control page 1

NAV control (control flow) =
[NAV_Uplnk..Cmd I NAV_Mode].

16:41:22 3 Dec 91 nls_avionics Data Dictionary Entry CAM_control page 1

CAM_control (control flow) ,.
[CAM_Uplnk_Cmd I CAM_Mode I CAM_Request].

16:43:04 3 Dec 91 nls..avionlcs Data Dictionary Entry RS_controi page 1

RS_control (control flow) -
[RS_Uplnk_Cmd].

16:33:37 3 Dec 91 nls_avionics Data Dictionary Entry PMAD control page 1

PMAD control (control flow) =
[Pa_,D_Uplnk_Cmd I PMAD_Mode].

16:34:26 3 Dec 91 nls_avionics Data Dictionary Entry FCTL_control page 1

FCTL_control (control flow) ,,
[FCTL_Uplnk Cmd I FCTL_Mode].



17':12:43 19 Nov 91 nls_avionics Data Dictionary Entry EDS...data page 1

"Jam (store) =
;_Fault_Status + VEH_Fault_Status.

11:15:41 18 Nov 91 his_avionics Data Dictionary Entry NAY_data3 page 1

NAV data3 (store) =
GP-S_Time_Upclate + NAV_Fault_Status + VEH Uftoff_Notification.

17:08:19 19 Nov 91 nls_avionics Data Dictionary Entry CAM_data page 1

CAMdata (store) =
CAM_Fault_Status + VEH_Fault_Status.

l
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FOREWORD

This report was prepared by Martin Marietta Manned Space Systems in New Orleans and Martin
Marietta Aerospace Group in Denver. The effort was conducted under Contract NAS8-37143
Shuttle-C for the period September 1991 through December 1991.
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1.0 Summary

An acoustics environments analysis was conducted for the NLS Reference Configurations to
estimate the sound pressure levels for the external and internal locations. The NLS 1 (HLLV) and
the NLS 2 (1.5 Stage Vehicle) were each evaluated for both the liftoff and ascent conditions. Titan,
STS, and Saturn flight and test data were used to estimate the external levels for various
longitudinal locations from the payload fairing nose to the aft engine compartment. The I-ILLV was
determined to exhibit a 5 clB exceedence in the low frequency end of the spectrum due to the liftoff
conditions over the STS ICD payload bay requirement. The 1.5 Stage Vehicle internal levels were
somewhat lower than the tR.LV, but a payload bay requirement has not been imposed for this
condiuon. A subs:ale test to determine the impact of the NLS water suppression system has been
recommended to further define the degree of acoustic level accuracy to understand verify the
acoustic levels.

2.0 Problem

The reference NLS vehicle configurations have been established to develop preliminary design data
to determine potential concept risks and "show stoppers". The acoustics environment levels on past
launch vehicles have been in the past technical concerns due to exceedences in payload design
levels and due to the complex nature of the acoustic propagation on the vehicle for both liftoff and
ascent conditions. This study has been conducted to understand the degree of noise suppression
required to meet STS payload bay requirements.

3.0 Objective

The objective of this study is to determine the external and internal acoustics levels of the
reference NLS 1 and 2 configurations. Particular interest is in the NLS 1 configuration payload bay
where STS ICD 2-19001 Sound Pressure Levels (SPL) are specified permitting the vehicle to fly
with STS compatible payloads. Additionally, internal levels arc required to evaluate the impact to
STS/ET hardware that is anticipated on the NLS core stage.

4.0 Approach

The approach for this study is to use existing flight and test data from Titan, STS, and Saturn
programs where applicable. Scaling of the data is performed to account for power, source
location, and frequency content differencesbetween themeasured dataand theNI_

configurations. A 3 dB uncertainty factor is applied to account for the statistical uncertainty in the
estimation process. Both external and internal levels are developed based on the attenuation
properties of the payload fairing and vehicle skin wall structure.
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Rev: Bulc
Date: 1/92

5.0 Results

The results of this study indicate that the NLS 1 configuration has as much as a 5 dB
exceedence in the low frequency spectrum in the payload bay compared to the STS payload design
levels. The NLS 2 has some slight ex_xtences also but are slightly lower. There currently is not a
payload level requirement for the NLS 2, so the exceedence is of no concern to date. External and
internal levels have been established for Cycle 1 analysis. These acoustic levels are based on
nominal trajectory cases provided in the fall of 1991. These results do not reflect increased levels
due to dispersed conditions. A revision update is currently in process to consider dispersed
conditions. The critical condition for the payload bay levels is due to liftoff.

6.0 Conclusions & Recommendations

The following conclusions were derived from this study:
1) The noise attenuation properties of the Titan IV Fairing are considerably less than the STS.
2) A 5 dB payload bay excedence has been determined for the NLS 1 configuration due to the

liftoff condition.

3) This analysis assumed STS / MI.P Acoustic characte6stics. It is recommended that a
subscale water suppression be performed with the flame trench to determine the impacts of
configuration change for the NLS.

4) Finally, the 3 inches of blankets used in the analysis can be optimized to reduce the high
frequency levels. Additional analysis is recommended to develop additional attenuation in the
fairing.

7.0 Supporting Data

The followingattachmentslistedinSection8.0areincludedtoprovidedetailedinformation

relativeto theAcousticsAnalysis study.

8.0 Attachments

Interoffice Memo 5486/CB-91-526, 20 December 1991, Final Report on the NLS Acoustic

Study, Stan Barrett.
Acoustics Analysis Executive Summary Presentation, January,1992
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Interoffice Memo

To:

cc:

From:

Subject:

5486/CB-91-526
20 December 1991

R. Harris

D. Rich, R. Hruda, B. Lowe, R. Foss

S. Barrett Ext: 7-9045 MS: L-5505

F_NAL REPORT ON NLS ACOUSTIC STUDY

Fax: 1-2599

The attached report describes the acoustic study that was conducted

by the Environmental & Subsystem Dynamics Group over the period 1

September to 20 December 1991 in support of the NLS contract which
Martin Marietta Manned Space Systems is performing for NASA/MSFC.

Two launch vehicle configurations were addressed during the study

-- the Heavy Lift Launch Vehicle (HLLV) and the 1.5 Stage Launch
Vehicle (1.5 LV). External and internal acoustic environments were

predicted du_ing liftoff and ascent at appropriate locations on both
vehicles. The results were compared with allowable acoustic

environments which have been specified for Titan IV and the Space

Shuttle. Methods of mitigating the environments were discussed and

several areas for further study were suggested.

Please address any questions or comments to the undersigned.

S. Barrett, Unit Head
Environmental & Subsystem Dynamics

Space Launch Systems.



FINAL REPORT

PREDICTED ACOUSTIC ENVIRONMENTS FOR THE N;_S

HEAVY LIFT LAUNCH VEHICLE AND _.5 STAGE LAUNCH V_H_CLR

PREPARED BY: _0_

R. B. LOWE, STAFF ENGINEER

R. L. FOSS, SENIOR ENGINEER

S. BARRETT, UNIT HEAD

ENVIRONMENTAL & SUBSYSTEM DYNAMICS

SPACE LAUNCH SYSTEMS

20 DECEMBER 1991

MARTIN MARIETTA ASTRONAUTICS GROUP

P.O. BOX 179
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V

SUMMARY

An acoustic study was performed for two candidate NLS launch

vehicle configurations, referred to as the Heavy Lift Launch Vehicle

(HLLV) and the 1.5 Stage Launch Vehicle (1.5 LV). External and

internal acoustic environments were predicted at selected stations for
both configurations and presented in the form of one-third octave band

Sound Pressure Level spectra. The predictions were made by
extrapolating data obtained from previous launch vehicles -- primarily

those associated with the Titan, Space Shuttle and Apollo programs.

Adjustments were made for differences in engine power, physical size,

structural configuration and launch trajectories.

Two flight phases were addressed; the first occurrance of severe

acoustics immediately following liftoff, then the later aeroacoustic
phase in which high levels of fluctuating pressure are generated during

the transonic and maximum dynamic pressure periods of flight. In the
absence of any definition of payload sizes, the internal predictions

for the payload fairings (PLF) were calculated only for the empty

configuration.

When the calculated PLF internal acoustic levels were compared witi

the specified allowable empty fairing levels for the Titan IV and the
Space Shuttle, severe exceedances were found across wide frequency

ranges, showing that steps would have to be taken to reduce the noise
levels. As an example of a partial solution, the effects of applying

standard Titan acoustic blankets (three inches thick) inside the PLF

were investigated. This treatment significantly reduced the high

frequency part of the problem but did little to help the lower

frequencies. It was concluded that the low frequency problem could best
be reduced by adding a dense acoustic barrier inside the fairing. This

would require some further detailed analysis before the optimum barrier
could be selected.
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1.0 INTRODUCTION

This study was performed by the Environmental & Subsystem Dynamics

Group, which is part of the SLS Loads and Dynamics Department, in

response to a request for technical support from Martin Marietta Manned

Space Systems in New Orleans, Louisiana. The objectives of the study
were to perform acoustic analyses in support of various National Launch

System (NLS) trade studies being conducted by MMMSS under contract to
the NASA/Marshal Space Flight Center.

Specifically, we were to establish the distribution of Sound
Pressure Level (SPL) along the external surface of two candidate NLS

vehicles, during liftoff and then during ascent through the

atmosphere. The two launch vehicles are referred to as the Heavy Lift

Launch Vehicle (HLLV) and the 1.5 Stage Launch Vehicle (1.5 LV); see

Figure I.i. After calculating the noise reduction properties
associated with the launch vehicles, we were then required to predict

the SPL which would occur inside the payload fairings and inside
various core stage locations such as intertank compartments, forward

and aft skirts and propulsion modules. An overview of the sequential

steps followed in the prediction process for liftoff and ascent is

provided in Figures 1.2 and 1.3

The purpose of this report is to describe the analytical methods

used, in appropriate detail, to document and discuss the results of the

study, and to provide convenient access to the data base that was used

in the development of the estimates.
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Lif[off External Predictions

Measured external
acoustic environment

Correct for acoustic

power differences

Correct for acoustic
source location differences

(height above peak source)

Correct frequency content
for differences

in geometry (Strouhal)

Add uncertainty factor
(3,m)

Liftoff External Predictions

Liftoff Internal Prediction¢

Measured Noise Reductions

(NR)

l
!

Correct NR curve tO account I

for differences in areal density Iand diameter

I

Correct for blanketed or I
unblanketed condition I

Adjust liftoff external predictionto free-field condition

Subtract adjusted NR from free-
field liftoff external prediction

)

i

Liftoff Internal Predictions

Figure 1.2

Liftoff Prediction Sequence
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Ascent External Predictions Ascent Internal Predictions

Measured external
acoustic environment

Correct for dynamic
pressure differences

Measured Noise Reductions

(NR)

CorrectNR curve to account
for external environment

coupling efficiency •

Correct frequency content
for differences in

geometry (Strouhal)

[ m -qo o,  , oo C o ouo s-- I I I.
Adjust ascent external prediction [
to free-field condition I

Adjust ascent external prediction
for acoustic impeAence variation

Add uncertaintyfactor
(3OB)

Ascent External Predictions

fieldascent external prediction

I_.o, , ool

Figme 1.3

Ascent Prediction Sequence
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2.0 HLLV PREDICTIONS

The acoustic predictions for HLLV were made for a number of zones

along the vehicle, selected at the areas of primary interest. The

zones are defined in Figure 2.1.

2.1 External Environment Durina Liftoff

2.1.1 Method of Analysis

The predictions of the external environment for the liftoff phase
were derived by extrapolating data obtained from ground and flight

tests on earlier programs. Much of the basic information for this

phase was taken from STS ground and flight data, because of the

similarity in engine configuration between the STS vehicle and the
HLLV; see Reference I, 2 and 3. In addition, data from the Titan

programs was used where applicable. After the basic predictions were
established, an uncertainty factor of 3 dB was added to the results.

Three scaling parameters were used, as follows:

(i) acoustic power, which is proportional to the mechanical power

produced by the liftoff engines and therefore to the product of engine
thrust and exhaust velocity. This was used to scale the overall sound

pressure level (OASPL).

(ii) acoustic source location, which was derived from subscale STS
model engine firings. This was used to calculate the variation in

OASPL as a function of vehicle zone.

(iii) Strouhal number. This parameter allowed the frequency
content of the calculated spectrum to be adjusted to account for

differences in nozzle diameter and exhaust velocity.

The application of the parametric scaling will now be discussed in more

detail.

(i) The acoustic power correction factor (APCF) was calculated
from the ratio of the engine properties of the baseline vehicle (the

SSME's and SRB's on STS--Reference 2) to the HLLV:

APCF (dB) ffii0 LOgl0 2 x TASRB x VASRB + 4 x TSTMEX VSTME

2 x TSR B x VSR B + 3 x TSSME x VSSME

where T = thrust = 14,680,000 N for the ASRB; 11,800,000 N for the

SRB; 2,593,000 N for the STME and 1,780,000 N for the SSME,
and V = exhaust velocity = 267J m/s for ASRB; 2500 m/s for the

SRB; 4247 m/s for the STME and 3250 m/s for the SSME.
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(ii) In the calculation of the source location correction, results
obtained from a launch simulation test performed on a 6.4% scale model

of the STS (References 1 and 3) were used. SPL spectra were measured

at a fixed location on the Orbiter as the vehicle was moved up away

from the pad. The scaled height above the pad which gave the highest

spectral value, regardless of frequency, was defined to represent the
worst case source location for the STS; this was called R(STS}.

The effective source location for the HLLV was estimated by

considering the mixing pattern of exhaust plumes from the four STME's

and the two ASRB's. Two equations from the literature (Reference 3)

were used to bound the estimate of the supersonic core length, as
follows:

LD = De[ 1.2 + 3.65M e ]

and L0 = 3.45De[ 1 + 0.38M e ]2

--where L 0 is laminar flow core length, De
M e is Mach number at the exit plane.

is exit diameter and

An assumed 12 degree plume growth was used to determine the

downstream distance at which the plumes might intersect, relative to
the above calculated core lengths and the elevation where maximum

acoustics was measured, assuming no cant angle. Indications were that

the STME plumes will intersect but the ASRB plumes probably will not
intersect within the elevation at which maximum acoustics is

experienced on the vehicle.

The distance from the source to the zone of interest was called

R (NLS).

The source location correction factor is given by

SLCF (dB)- 20 IogI0(R(NLS)/R(STS) }

This correction was added to the baseline OASPL scaled from the STS

data. The process was repeated for each NLS zone.

(Ill) The frequency correction was calculated on the basis of

maintaining a constant Strouhal number, SN - f x D/V:

--where

ieo,

and

{f x D/V}HLL v = (f x D/V}sT S

f - frequency in Hz
D - Effective nozzle diameter

V = Effective exhaust velocity
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The concept of "effective" values must be used because each vehicle

has two different sets of nozzles, operating simultaneously. Effective
nozzle diameter and exhaust velocity were calculated for the two cases

on the basis of geometry and power. Since the STME's are all equal in

power, the correction Applied increased the Strouhal diameter by the

square root of the number (4) of STME engines. These were then

combined, based on their contribution to the overall sound power level

(OAPWL) and compared with the STS combined SSME and SRB power.

2.1.2 Numerical Correction Factors

The following numerical correction factors were calculated by the

processes described in the previous section.

(i) Calculation of Acoustic Power Correction Factor:

APCF = i0 Log10 2 x 14.68E06 x 2763 + 4 x 2.593E06 x 4247

2 x II.8E06 x 2500 + 3 x 1.78E06 x 3250

= 2.1 dB.

(ii) Calculation of Strouhal parameter:

SN(STME)/f - De(STME)/V(STME) - [4] 1/2 D(STME)/V(STME)
= 2 x 2.21/4247
= 0.00104

SN(ASRB)/f - D(ASRB)/V(ASRB}
m 3.78/2673

0.00141

De (SSME)/V(SSME) -- 1.73 x 2.39/32so
.m 0.001274

[3 ]I/2D (SSME)/V (SSME)

SN(SRB) /t -- D(SRB)/V(BRB)
" 3.77/2500
" 0.00151

(iii) Calculation of mechanical power ratio:

P{ASRB)/P(TOT) - 3.9E10/6.1E10 - 0.64

P(SRB)/P(TOT) - 2.95E10/3.8E10 - 0.78

,,_w-
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(iv)

De(STS ) = [0.78 x 3.772

De(HLLV ) - [[0.64 X 3.782

Ve(STS ) - 0.78 x 2500 +

Ve(HLLV ) = 0.64 x 2673 +

Calculation of equivalent nozzle exit diameter:

+ 0.22 x 4.142] 1/2 = 3.85 m

+ 0.36 x 4.422] 1/2 - 4.02

0.22 x 3250 - 2665 m/s

0.36 x 4247 - 3248 m/s

--therefore

(v) Calculation of Strouhal parameter:

SN(STS)/f = 3.85/2665 = 0.00145

SN(HLLV)/f = 4.02/3240 = 0.00124

(vi) Calculation of frequency shifts

Under the assumption that Strouhal number is constant,

SN(HLLV) = SN(STS)

f(HLLV) x D(HLLV) = f(STS) x D(STS)

V(HLLV) V(STS)

f(HLLV) = D(STS) x V(HLLV)

f(STS) D(HLLV) x V(STS)

- 0.00145/0. 00124

- 1.17

This is greater than 1/6 octave band but less than 1/3 octave
band. A similar calculation which assumed that SSME's and STME's do

not combine led to a frequency shift of approximately. I/6 octave band;
therefore it was concluded that a shift of 1/3 octave band was

appropriate and this was applied to t/_+e data.

2.1.3 Results

Using the method and corrections described above, external spectra
for various zones on the HLLV were calculated and plotted. The spectra

are shown in Figures 2.2 through 2.7, for Zones C, D, E, F, G and H;

refer to Figure 2.1 for a definition of the zones. It was assumed that

the spectrum shape will be constant along the exterior of the payload
fairing. The variation in overall SPL is given in Figure 2.8.

Page 9



lS0.0

,-, 140.0

130.0

o
3 12o.o

rA

0
u3

110.0

100.0
10.0

/ "-'-...,,,/.,.,
..J . ,,.,.

Q jr" %Omt%e

\.

X.,...,.

ii

L._d
eOA= 152.1 6

100.0 1000.0

Frequency (I-Iz)
1OOOO.O

H1.L,V Liftoff Zone C F.xtcn,.al Acoustic Levels

Afu_rmath vl.25 (orizabe) [_ber 16. 1991 t
Page 10



IS0.0

140.0

130,0

:=
." 120.0

0
u3

110.0

100.0
10.0

I
,f

i.o.I"
o-

I"

• ." "-.%

I.

• °. o..•o.o "% • ".%
• oO" °o •

i ir

• OA" 154.4 dB

!I i

I I Ii .....

100.0

•'°.0.%

o°..

°..,,

\
"i

i i , ,

i,.'1"% i

%'!.

1000,0

F'n_luency (hz)

10000.0

Figure 2.3

HI.,LV Liftoff Zone D External Surface Acoustic Levels



V ¸

160.0

150.0

140.0

]

130.0

vj

120.0

110.0
10.0

i ...............

•'°°

/ ",..,.. ,.
/ _'"m. .-""'m
/ ",•- -,.

.• •°
re,o" °'•,

• "°'n'°_ •" •---I.,•

"•

m •.
• . ,•,o %•

1000.0

r._ue,cy (hz)

i

• OA,,I_.8_
i

, t t i I I i i

100.0

i , I | ,

10000.0

FiSun_ 2.4

I-LLV Liftoff 2one H Hxtcrrml Surf'zc Acoustic Lcvcls -._.j

PaL,c 12



160.0

150.0

140.0

+
120.0

• OA ,, 156.1 dB
i

i i

110.0 .........
10.0 100.0 1000.0

Fz-..qucncy(Hz)

• . . + +

10000.0

Figure 2..5 i

HLLV Lifloff Zone F External Acoustic Levels
°

Aftcrmalhvi.7,.5(ovizaba)De--her 16, 1991 I

Page 13



160.0

t)
o_
c_

]

"0

0

1SO.O

140.0

130.0

120.0

• oa

i--.I...i" 6.%
"'l. / •

"i" %%
.i

io°.l"

i .Bin

IIr

j i " OA- 15")'.4

110.0 '
10.0

I

b

100.0

11.°°•,%

Ilo--m..°

I i i i i i i

100O.0

Frequency (hz)

\
b

%% • .*" • ,%.•

t ....

10000.0

Figure 2.6 _

HLLV Liftoff Zone G ExternalSurfac¢ Acoustic Levels

.... - L -_ _',--_k.. 11, 1_| t

Page 14



160.0

ISO.O

m.

o,

140"01

130.0

"cI
c

0
crj

!
• I

". m1.6

120.0

• OA - 167.4 dB

nu

110.0 ....

10.0

.\

f" , \

, , , i i i .....

100.0 1000.0

Frequency (hz)

|

10000.0

Figure 2.7

HLLV Liftoff Zone H External Surface Acoustic Lcvcls

Pagc 15



F_,ure 2.8'

Variation of External L/ftoff Level Along
the HLLV Payload Fairing.

0

-2
\

\

0 20 40 60 80 100

HEIGHT ABOVE PLF BASE (FD

Page 16



2.2 Internal Environment Durlna Liftoff

2.2.1 Method of Analysis

The first step in predicting the internal environment was to

correct the external data from surface values, as measured, to

free-field conditions, using the set of frequency-related corrections

in Table 1. The internal spectrum was then calculated by subtracting
the Noise Reduction (NR) curve for the protective structure. The NR

curves for the payload fairing were developed by scaling acoustic data

measured on the Titan 34D program (Reference 5), for the bare (no
blanket) condition and on Titan IV (Reference 6) for the blanketed

configuration. NR curves for the downstage structures were derived

from Commercial Titan development testing that was performed at MMC in
1988 on a cylindrical skirt (Reference 7). The results were scaled on

the basis of weight per unit area, which inversely affects the

amplitude of the curve, andthe diameter, which causes a shift in the

ring frequency:

Ring frequency fR l [EI_ ]ll21_'dcy I, so that

fRfHI_V) . dcy I(cT)

fR(CT) dcyI(HLLV)

2.2.2 Numerical Correction Factors

Correction factors were calculated having the following values:

Density scaling factor (DSF) for the PLF adapter:

DSF (dB) m 20 Log (0. 013773/0. 013003 }
- +0.5 dB

Density scaling factor (DSF) for forward skirt:

DSF (dB) - 20 LOgl0{ [W/A]NLS/[W/A]TEST }

-- 20 LOg (0.013624/0.013003}

-- +0.4 dB

Density scaling factor for intertank:

DSF (dB) - 20 Log {0.023282/0.013003}

= +5.0 dB

Density scaling factor for propulsion module aft skirt:

DSF (dB) = 20 Log {0.02648/0.013003}

- +6.2 dB

D. ¢*,. 1 "7



Ring frequency shift for PLF adapter:

rTEST/rNLS - 69"/143" - 0.42

Frequency shift (in oct) - Log 0.42 / Log 2 - -1.25

To the nearest 1/3 octave this represents a downward shift of four 1/3
octave bands.

Ring frequency shift for forward skirt, intertank and aft skirt:

rTEST/rNLS - 60"/165" - 0.36

To the nearest 1/3 octave this represents a downward shift of five 1/3
octave bands.

2.2.3 Results

Using the corrections developed above, internal spectra at the
HLLV zones of interest were calculated. The results were combined with

the internal spectra calculated in the next two sections for the ascent

phase of the mission, and plotted as worst-case envelopes. The spectra

are presented in Section 2.4.3. as Figures 2.17 through 2.22.

2.3 External Environments Durina Ascent

2.3.1 Method of Analysis

For the ascent phase, the predictions were based on a combination

of data sources. The basic approach was the same as that used for

liftoff; appropriate flight and ground test data were collected and
modified to allow for differences in the governing parameters.

Wherever possible, the Titan IV database was used, since it

contains up-to-date information and it continues to be refined as more

flights are accomplished. Also, the data acquisition and analysis

techniques which are inherent in the Titan IV database are much

superior to those used a few years ago. For the zones on the payload

fairing, advantage was taken of a large body of wind-tunnel test data

performed to support the Titan IIIC, IIIE and IV programs in 1988.
These tests typically collected data from 24 acoustic transducers and

covered Mach numbers ranging from 0.70 to 1.60, for various
combinations of angle of attack and sideslip angle. The results were

reported in detail in Reference 8.

The measured data was corrected for differences in maximum dynamic

pressure (q max), which directly scales the magnitude of the acoustic

spectra , and for the frequency shift introduced by differences in
external diameter, following the constant Strouhal number law.
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2.3.2 Numerical Correction Factors

Scaling for dynamic pressure:

qmax for T-IV - 936 psf (typical)

qmax for HLLV - 806 psf,

--therefore, dynamic pressure correction factor is

DPCF (dB) -20 LOgl0 { qmax(HLLV) / qmax(T-IV)}

- 20 Log 806/936 - -1.3 dB.

Frequency correction:

The calculated correction shifted the frequency scale upward by two 1/3
octave bands.

2.3.3 Results.

Figures 2.9 through 2.16 give the predicted external environments
during ascent. These were next used to calculate the internal
environments.

2.4 Internal Environments Durina Ascent

2.4.1 Method of Analysis

After correcting the external estimates to correspond to free-field
levels the internal environments were calculated by subtracting the

appropriate noise reduction curves from the external spectra. The NR

curves, which had been computed for liftoff conditions, were first

adjusted for the differences in performance at high altitude. It is
known that better noise reduction is realized from a payload fairing

during aeroacoustics than during liftoff, especially in the lower

frequencies (below i000 Hz or so). The phenomenon is not fully
understood, but it is related to the reduction in acoustic impedance

(the product of air density and speed of sound) and the difference in
the nature of the noise field, caused during aeroacoustlcs by

fluctuating aerodynamic pressures which progress past the surface
rather than the fairly stationary reverberant acoustic field
characteristic of liftoff. In this study, an empirical correction was

derived from a comparison of the effective NR (defined as External SPL
minus Internal SPL) measured on Titan IV during liftoff versus the same

quantity measured during the transonic/max q phase.
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The NR curves for both bare and blanketed conditions were applied,

using the data sources cited in Section 2.2.1.

2.4.2 Numerical Correction Factors

A correction was applied across the spectrum to account for the

difference in the acoustic impedance at altitude; this was a factor of
+0.5 dB.

The correction factors which we used to modify the llftoff NR curve

before applylng it to the aeroa¢oustlc external predictions are llsted
in Table 2.1 which follows.

Table 2.1. Noise Reduction Correction Factors

1/30B Center Delta NRApplied Delta NRApplied
Frequency (Hz) at Transonlcs (dB) at Max q (dB)

20 -3.2 3.5
25 -3.4 12.1
32 4.0 9.9
40 0.5 -2.8
50 2.4 8.9
63 -1.1 6.6
80 -4.5 7.0
100 i.i 8.7

125 -0.3 8.5

160 -0.8 6.2

200 2.2 8.4

250 4.7 9.8
315 -0.6 5.6

400 1.1 4.5

500 1.8 3.0

630 2.4 1.9

800 3.8 3.6
1000 3.9 5.6
1250 0.1 3.8
1600 -2.0 1.8
2000 3.9 6.6
2500 -0.5 1.6
3150 -2.9 -4.1
4000 -2.1 -0.6

2.4.3 Results

The predicted internal environments for the HLLV payload fairing
and downstage compartments are plotted in figures 2.17 through 2.22.

The curves represent worst-case conditions, since they plot envelope_

of the liftotf, transonic and max q spectra. V
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The PLF curves in Figures 2.17 and 2.18 address the two interior
conditions, bare and blanketed. For comparison, the two plots also
contain the maximum allowable acoustic evironments fort he STS Orbiter

cargo bay and the Titan IV payload fairing_ these are considered to be
"baseline requirements" in the sense that manypotential NLS payloads

will have been designed and tested to fly on one of those two

vehicles. The results are discussed fronthispoint of view in Sectio,
4.0.
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3.0 1.5 LV PREDICTIONS

The acoustic predictions for the 1.5 Stage Launch Vehicle were made

for the zones defined in Figure 3.1.

3.1 External Environment Durinq Di_toff

3.1.1 Method of analysis

The predictions of the external environments used the same method

of analysis as was used for the HLLV. The method was described in

detail in Section 2.1.1. The same general parametric scaling approach

was adopted, incorporating numerical values appropriate to the 1.5 LV
to obtain the correction factors listed below:

3.1.2 Numerical Correction Factors

(i) Acoustic power correction factor:

APCF (dB) = 10 Log10 6 x T(STME) x V(STME)

2 x T(SRB) x V(SRB) + 3 x T(SSME) x V(SSME)

where T = thrust = 2,650,000 ib for the SRB; 390,000 Ib for the

SSME and 583,000 ib for the STME,

and V - exhaust velocity = 8200 fps for the SRB; 10,660 fps for

the SSME and 13,934 fps for the STME, leading to

APCF (dB) = 10 Log10 6 x 583,000 x 13,934

2 x 2,650,000 x 8,200 + 3 x 390,000 x 10,660

= -0.6 dB

(ii) Strouhal parameter:

SN(STME)/f = De(STME)/v(STME) -
- 2.45 x 7.25/13934
= 0. 00128

SN(SSME)/f = 0.001274

SN(SRB)/f = 0.00151

[6 ] I/2D (STME)/V (STME)

De(SSME ) = [3] 1/2 x 7.8 = 13.51 ft

De(SRB ) = D(SRB) = 12.4 ft
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(iii) Mechanical power ratio:

P (SRB)/P(STS) =

P(SSME)/P (STS)

2 x T(SRB) x V(SRB)

2 x T(SRB) x V(SRB) + 3 x T(SSME) x V(SSME)

- 4.35EI0/5.59E10

= 0.78

- 3 x T(SSME) x V(SSME)

2 x T(SRB) x V(SRB) + 3 x T(SSME) x V(SSME)

- 1.23E10/5.59E10

= 0.22

(iv) Equivalent nozzle diameter and equivalent velocity:

De(STS ) = [0.78 x 12.42 + 0.22 x 13.512] 1/2 - 12.65 ft

De(I.5LV ) = [6] 1/2 x D(STME) = 17.76 ft

Ve(STS ) = 0.78 x 8200 + 0.22 x 10,660 = 8741 fps

Ve(I.5LV ) = 13,934 fps

(v) Strouhal parameter:

SN(STS)/f = 12.65/8741 - 0.00145

SN(I.5LV)/f - 17.76/13,934 - 0.00128

(vi) Frequency shift:

f(STS)/f(I.5 LV) - 0.00145/0.00128 - 1.13

This is equivalent to about a 1/6 octave band, so no frequency

shift will be applied.

3.1.3 Results

The predicted external acoustic spectra for the 1.5 LV during
liftoff were calculated for zones 1 through 5, using the above

numerical corrections. The results are plotted in Figures 3.2 through

3.6. The variation in OASPL along the PLF is shown in Figure 3.7.
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3.2 Internal Environments Durina Liftoff

3.2.1 Method of Analysis

The same methodology was employed for this section as was used in
the HLLV analysis. Since the core vehicle is common to both

configurations and the PLF's are essentially identical, the same noise

reduction curves apply to both cases.

3.2.2 Numerical Correction Factors

Because of the similarities discussed above it was not necessary to
calculate any numerical corrections that were different to the HLLV
factors.

3.2.3 Results

The internal acoustic environments during liftoff for zones 1

through 5 were calculated, incorporating the correction factors
identified above. The results are plotted in Figures 3.8 through

3.13. These results were also modified, for Zones 1 and 2, to show the
predicted effects of adding a standard 3 inch blanket inside the PLF,

then presented in Figures 3.14 and 3.15.

3.3 External Environments Durina AsceDt

3.3.1 Method of Analysis

The same basic analytical approach was used for the 1.5 LV as for
the HLLV for the ascent phase, but different reference data was

required on the core because of the absence of the ASRB's. Saturn
flight data (Reference 9) was used for the baseline intertank and aft

skirt after concluding that the max q environment was critical, not
transonics.

3.3.2 Numerical Correction Factors

The HLLV levels calculated for the ascent external phase were

modified for a difference in q at a Mach number of 0.76. This applies
to 1.5 LV zones I, 2, 3a and 3b.

Correction Factor = 20 Log (ql. SLV/qHLLV)

= 20 Log (514/575} = -1.0 dB
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A slightly different correction factor was calculated for 1.5 LV
zones 4 and 5:

Correction Factor = 20 Log {ql.5LV/qsaturn}

= 20 Log(627/690} = -0.8 dB

3.3.3 Results

The external levels during ascent were calculated after

incorporating the corrections from the previous paragraph.
are plotted in Figures 3.16 through 3.21.

The results

3.4 Internal Environments Durina Ascent

3.4.1 Method of Analysis

The same approach was followed here as for the HLLV analysis, as
described in Section 2.4.1.

3.4.2 Numerical Correction Factors

An acoustic impedance correction of -0.8 dB was applied to zones 1
2, 3a and 3b. This accounted for the difference between HLLV and 1.5

LV trajectories. For zones 4 and 5 the correction was +3.2 dB, arising
from the difference between the Saturn and 1.5 LV trajectories. The

correction factors to modify the liftoff NR curve were identical to
those shown in Table 2.1.

3.4.3 Results

The predicted internal environments for ascent were obtained by

subtracting the appropriate NR spectra from the external levels,

incorporating the corrections Just discussed. The results are shown in

Figures 3.22 through 3.27, for zones I, 2, 3a, 3b, 4 and 5. The
modified internal levels for the PLF with a 3 inch blanket are plotted

in Figures 3.28 and 3.29.

Plots of the worst case internal levels, obtained by enveloping the

liftoff and ascent cases, are shown in Figures 3.30 through 3.33, for
the bare and blanketed conditions. The baseline requirements, from

Titan IV and STS, are included for comparison; these are discussed in
the next section.

Tabulated values of the acoustic environments for the 1.5 Launch

Vehicle are provided in Tables 3.1 through 3.4

V
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4.0 Comparison with Reoui_ements

4.1 HLLV

Figures 2.17 and 2.18 show that the predicted spectra within the

bare HLLV PLF exceed the two baseline requirement curves over the full
frequency range, by margins ranging from about 2 to 16 dB. The

exceedance is greater for Zone C, at the forward end of the fairing;

however, the Zone D comparison is probably more significant since most

payloads will occupy the aft half of the PLF. The OASPL for Zone C is

152.7 dB, well above the requirement of 139 dB. For Zone D the overall
level is 146.9 dB.

The addition of the standard Titan IV blanket (3" thick fiberglass)

improved the situation considerably. For Zone C the OASPL was reduced

to 139 dB, matching the requirement, although exceedances were still
visible in a few frequency bands, primarily in the range below I00 Hz.

In Zone D the bare OASPL of 146.9 dB was reduced to 140.8 dB by the
blanket. Again, exceedances were noted to remain below 250 Hz.

The apparent improvement credited to the blanket is typical and

believable for the upper frequencies--say above 300 Hz or so--but is

questionable in the lower range, where very thick blankets would be

required to provide the implied degree of absorption. The calculations
leading to the results were based on data measured during a Titan 34D

acoustic chamber test for the bare condition, and on Titan IV flight
data for the blanketed condition. It is concluded that the differences

in ambient conditions reduces the validity of the bare versus blanketed

comparison, for the low frequencies. We would tend to have more
confidence in the flight data, suggesting that the T-34D data might be

excessively high in the low frequencies, where problems are often

encountered in accurately measuring the average environment in an
acoustic chamber. It would be useful if flight data could be obtained

to determine the NR properties of a bare fairing, but we have not been
able to locate any such data so far.

4.2 1.5 LV

The comparison of 1.5 LV internal PLF predictions with Titan IV and
STS leads to conclusions similar to those discussed above. Figure 3.30

shows that the envelope of liftoff and ascent predictions inside the

PLF (forward part, Zone 1) exceeds the specification curves by a margin

of 15 to 20 dB. Adding a 3 inch blanket (Figure 3.31) essentially
cures the problem -- the only remaining exceedances are in the 100 to

200 Hz bands and these are only 3 dB or so. However, this again would

require the blanket to be very effective in the low frequencies,

whereas experience indicates otherwise. Figure 3.32 makes the

prediction versus specification comparison for the aft part of the PLF

(Zone 2). The exeedance here still covers the whole frequency range,

but is much less--1 to 13 dB. Figure 3.33 shows that adding the

blanket brings the environment down to the point where the

specification is only exceeded by 2 dB at 40 Hz and 200 Hz.
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5.0 CONCLUSIONS

The acoustic predictions developed for the two NLS launch vehicles

should provide a useful basis from which to develop specific acoustic
and vibration environments inside the payload falrings and various

vehicle compartments.

When the predicted internal acoustic levels for the payload region
were compared with the specified environments for Titan IV and STS
payloads, significant exceedances were found. The HI_ levels were

generally higher than the allowable spectra, over a wide range of
frequencies. This concluslon applied to both NLS configurations. The

situation was improved to some degree when the predictions were

repeated with a standard Titan blanket (three inches thick) installed

in the payload fairings, but the improvements can only be expected with

confidence in the higher frequencies. It was concluded that other
noise reduction methods should be investigated with the objective of

lowering the low frequency environments. A number of possible

approaches were discussed as subjects for follow-on work.
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6.0 RECOMMENDATIONS FOR FOLLOW-ON EFFORT

The relults of this study, when viewed in the context of our

experience on other launch vehicle programs, indicate a number of areas
in whleh we believe further effort should be expended. They are
discussed in this section.

6.1 Methods of Attenuatina Level_ to Meet Reauirements

There are two basic methods of reducing the acoustic environment

inside the PLF: (i) improve the noise reduction performance of the

fairing, and (ii) decrease the acoustic level emanating from the engine
exhausts. Both methods would help the situation at liftoff, but the

aerodynamic noise would only be reduced by the first approach.

(i) The addition of a 3" blanket was shown to increase the high

frequency noise reduction properties of the PLF quite significantly
(see, for example, Figure XXX) but it did not cause much improvement in

the low frequencies. In other programs we have found that attaching

conmtrained-layer viscoelastic damping to the inside surface of the PLY
enhances its noise reduction properties across a wide frequency range,

though the improvement is generally not large and the dimensions and

stiffness of the damping system must be selected very carefully to

maximize performance and justify the accompanying weight penalty.

Effective treatment of the lower frequencies can result from using a

dense limp barrier, installed inside the PLF so as to incorporate the
optimum air gap between the barrier and the fairing to simulate a
"double wall" structure.

The acoustic protection afforded by the PLF itself can be maximized

if this requirement is incorporated into the structural design early

enough. The noise reduction curve, shown in Figure ZZZ for a typical

fairing, is strongly dependent on the circumferential stiffness, which

defines the ring frequency of the cylinder. This is the frequency
associated with the "breathing mode", in which the cylinder expands and

contra_ts while maintaining a circular cross-section. The value of the

ring frequency coincides with the minimum value of the curve, since it

is the frequency at which the fairing tends to become acoustically

transparent. If the ring frequency is increased over the initial
value, the noise reduction curve will move to the right, along the

frequency axis. This causes the low frequency noise reduction to
increase while the high frequency noise reduction decreases. The loss

in high frequency performance can readily be compensated for, with the

use of absorptive blankets.

(ii) The acoustic levels generated by the engines at liftoff can
be reduced to some degree by the use of water supression and by

designing the pad geometry to minimize reflection effects. Techniques
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such as lengthening the exhaust duct have been investigated by MMAG in
recent years and research is continuing in this area. We have

demonstrated that subscale testing, in which the liftoff is simulated
using cold gas Jets, can provide valuable infor_Ition on the acoustical

impacts of pad design changes. This approach is reasonably low cost
and gives repeatable results.

It must be emphasized that these techniques should be incorporated

into the design process as early as possible, for maximum benefit to be
realized.

6.2 Sneclal Puroose DeveloPment Tes_t

There are several potential mitigation techniques in which analysis

should be backed up by testing, to support the goal of achieving
acoustic attenuation, including the following:

(i) The selection of optimum blanket/barrier/dalping
treatments, using panels mounted in a Transmission Loss acoustic
chamber.

(li) The development of local acoustic attenuation shrouds,

used inside the payload fairing to protect subsystems which may have
been previously qualified to a lower environment; this could be a

cost-effective alternative to re-qualifying and/or re-designing the
subsystem for the NLS environment.

(iii) The development of vibration isolation techniques for

large subsystems, using off-the-shelf isolators selected on the basis

of the subsystem frequencies and the shape of the acoustic spectrum

inside the NLS payload fairing.

6.3 Vibration Studies

Even before NLS payloads are defined in detail, there are a number

of general vibration problem areas thatshould be addressed. Recently
developed techniques for estimating acoustically-induced vibration

environments, such as the VAPEPS and PROXIMODE methods, should be

evaluated in terns of their applicability to the NLS progrsm. The

development of a cost-effectlve flight Instrumentation plan, which

would integrate flight data with development tasting and analysis could

be started quite early in the program. Standardized flight
instrumentation brackets should be developed, having appropriate

frequency characteristics which will avoid data pollution caused by

dynamic problems in the brackets themselves.

%._
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8.2 _DDendix B: Data Base From Previous Proar_s

This appendix provides tables of the Saturn program information

which was utilized in the derivation of the 1.5 LV environmental

estimates.



Saturn Acoustic Data from Apollo 12 (AS-507)
External Microphone: B0028-402, Time: T-2 seconds

Aft end of S-II / S-IVB Interstage, Forward Facing Conic

OASPL - 151.0 dB (Ref 2.9e-09 psi)

Freq SPL
(sz) (dB)
50.0 135.6

63.0 137.6

80.0 140.1

100.0 142.1

125.0 139.6

160.0 141.6

200.0 141.6

250.0 139.1

315.0 139.1

400.0 140.1

500.0 139.1

630.0 137.6

800.0 137.1

1000.0 132.1

1250.0 133.2

1600.0 130.7

2000.0 131.2

2500.0 126.2

3150.0 124.7

Saturn Acoustic Data from Apollo 12 (AS-507)

External Microphone: B0029-402, Time: T-2 seconds

Aft end of S-II / S-IVB Interstage, Forward Facing

OASPL - 149.7 dB (Ref 2.9e-09 psi)

Freq SPL
(Hz) (dB)

50.0 137.1

63.0 139.1

80.0 140.1

100.0 140.1

125.0 138.1

160.0 139.6

200.0 140.1

250.0 135.6

315.0 136.6

400.0 138.1

500.0 136.1

630.0 135.6

800.0 135.6

1000.0 135.6

1250.0 132.7

1600.0 129.2

2000.0 128.7

2500.0 125.7

3150.0 125.7

Conic

Frustrum

Frustrum
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Saturn Acoustic Data from Apollo 12 (AS-507)

External Microphone: B0030-402, Time: T-2 seconds

Aft end of S-II / S-IVB Interstage, Forward Facing

OASPL - 148.5 dB (Ref 2.9e-09 psi}

Freq SPL

(Hz] (dB)
50.0 136.6

63.0 138.1

80.0 138.6

100.0 139.1

125.0 135.6

160.0 138.6

200.0 138.6

250.0 132.1
315.0 135.1

400.0 136.1

500.0 134.1

630.0 135.6

800.0 135.6

1000.0 135.1

1250.0 132.2

1600.0 128.7

2000.0 128.7

2500.0 126.2
3150.0 125.7

Conic Frustrum

Saturn Acoustic Data fra_Apollo 12 (AS-507)

External Microphone: B0031-402, Time: T-2 seconds
Fwd end of S-II / S-IVB Interstage, Forward Facing Conic Frustrum

OASPL - 148.2 dB (Ref 2.9e-09 psi)

Freq SPL
(Hz) (dB)
50.0 135.6

63.0 137.1

80.0 137.1

100.0 136.6

125.0 133.1

160.0 135.6

200.0 137.1

250.0 135.6

315.0 133.6

400.0 136.6

500.0 134.1

630.0 135.6

800.0 137.1

1000.0 137.1

1250.0 136.2

1600.0 132.7

2000.0 132.2

2500.0 130.7

3150.0 126.2
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Saturn Acoustic Da_-a from Apollo 12 (AS-507)

External Microphone: B0032-402, Time: T-2 seconds

Fwd end of S-II / S-IVB Interstage, Forward Facing Conic Frustrum

OASPL - 149.4 dB (Ref 2.9e-09 psi)

Freq SPL

(ez) (dS)
50.0 135.6

63.0 137.6

80.0 138.1

100.0 159.6

125.0 138.1

160.0 139.1

200.0 138.6

250.0 135.6

315.0 130.1

400.0 134.6

500.0 137.1

630.0 137.1

800.0 137.1

1000.0 138.6

1250.0 135.7

1600.0 133.7

2000.0 133.2

2500.0 131.7

3150.0 126.2

Saturn Acoustic Data from Apollo 12 (AS-507)

External Microphone: B0033-402, Time: T-2 seconds

Aft end of S-II / S-IVB Interstage, Forward Facing Conic Frustrum

OASPL - 155.2 dB (Ref 2.9e-09 psi)

Freq SPL
(ez) (dB)

50.0 143.6

63.0 147.1

80.0 144.6

100.0 146.6

125.0 143.1

160.0 144.6

200.0 144.6

250.0 142.1

315.0 142.1

400.0 141.6

500.0 139.6

630.0 139.6

800.0 139.6

1000.0 140.1

1250.0 138.2

1600.0 134.2

2000.0 134.7

2500.0 135.2

3150.0 126.2
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Saturn Acoustic Data from Apollo 12 (AS-507)

External Microphone: B0034-402, Time: T-2 seconds

Aft end of S-II / S-IVB Interstage, Forward Facing Conic
OASPL - 152.4 dR (Ref 2.9e-09 psi)

Freq SPL

(8z) (dR)
50.0 137.1

63.0 141.6

80.0 141.6

100.0 142.6

125.0 139.6

160.0 143.1

200.0 143.6

250.0 139.6

315.0 139.6

400.0 139.6

500.0 138.6

630.0 139.6

800.0 138.6

1000.0 137.1

1250.0 137.2

1600.0 134.2

2000.0 134.2

2500.0 134.2

3150.0 126.2

Frustrum

Saturn Acoustic Data from Apollo 12 (AS-507)

External Microphone: B0035-402, Time: T-2 seconds

Aft end of S-II / S-IVB Interstage, Forward Facing

OASPL - 152.6 dB (Ref 2.9e-09 psi)

Freq SPL
(Hz) (dR)
50.0 138.1

63.0 142.6

80.0 142.6

100.0 141.6

125.0 138.6

160.0 143.1

200.0 141.6

250.0 141.1

315.0 140.6

400.0 140.6

500.0 138.6

630.0 139.1

800.0 139.6

1000.0 138.6

1250.0 136.2

1600.0 135.2

2000.0 134.7

2500.0 135.2

3150.0 130.2

Conic Frustrum

v
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Saturn Acoustic Data from Apollo 12 (AS-507)

External Microphone: B0036-402, Time: T-2 seconds
Fwd end of S-II / S-IVB Interstage, Forward Facing Conic Frustrum

OASPL - 153.0 dB (Ref 2.9e-09 psi)

50.0 139.6

63.0 143.6

80.0 142.6

100.0 142.6

125.0 138.6

160.0 140.6

200.0 141.6

250.0 140.1

315.0 140.6

400.0 140.6

500.0 139.6

630.0 140.6

800.0 140.6

1000.0 139.6

1250.0 138.2

1600.0 135.2

2000.0 137.2

2500.0 136.7

3150.0 136.2

Saturn Acoustic Data from Apollo 12 (AS-507)

External Microphone: B0037-404, Time: T-2 seconds

Aft end of S-IVB Skirt, Cylinder Fwd of Frustrum

OASPL - 154.3 dB (Ref 2.9e-09 psi)

50.0

63.0

8O.O

100.0

125.0

160.0

200.0

250.0

315.0

400.0

500.0

630.0

800.0

1000.0

1250.0

1600.0

2000.0

2500.0

3150.0

140.6

145.6

145.6

142.6

140.6

143.1

143.1

141.6

140.6

141 1

140 1

141 6

139 6

139 1

140 2

137 7

136.7

139.7

131.7
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Saturn Acoustic Data from Apollo 12 (AS-507)

External Microphone: B0038-404, Time: T-2 seconds

Aft end of S-IVB Skirt, Cylinder Fwd of Frustrum

OASPL - 153.2 dB (Ref 2.9e-09 psi)

Freq SPL

(Sz) (dB)
50.0 138.1

63.0 143.6

80.0 143.6

100.0 141.6

125.0 139.6

160.0 142.6

200.0 143.1

250.0 142.1

315.0 141.6

400.0 141.1

500.0 138.6

630.0 139.1

800.0 138.6

1000 0 138.6

1250 0 137.2

1600 0 135.7

2000 0 136.7

2500 0 135.7

3150 0 128.7

Saturn Acoustic Data from Apollo 12 (AS-507)

External Microphone: B0039-404, Time: T-2 seconds

Aft end of S-IVB Skirt, Cylinder Fwd of Frustrum

OASPL - 150.3 dB (Ref 2.9e-09 psi)

Freq SPL

(Sz) (dB)

50.0 135.6

63.0 137.6

80.0 139.6

100.0 141.1

125.0 138.1

160.0 142.1

200.0 140.1

250.0 137.1

315.0 138.6

400.0 138.1

500.0 135.1

630.0 135.6

800.0 134.6

1000.0 133.1

1250.0 137.2

1600.0 133.2

2000.0 133.2

2500.0 132.2

3150.0 126.2



Saturn Acoustic Data from Apollo 10 (AS-505)

External Microphone: B0016-219, Time: T-60 seconds

S-II Forward Skirt, Aft of Forward Facing Frustrum

OAFPL - 155.1 dB (Ref 2.9e-09 psi)

Freq SPL

(Hz) (dS)
50.0 139.1

63.0 140.6

80.0 143.6

100.0 144.1

125.0 143.6

160.0 143.6

200.0 143.6

250.0 143.6

315.0 143.6

400.0 143.1

500.0 142.6

630.0 142.1

800.0 142.1

1000.0 141.7

1250.0 141.7

1600.0 141.7

2000.0 140.7

2500.0 138.7

3150.0 132.2

Saturn Acoustic Data from Apollo i0 (AS-505)

External Microphone: B0037-200, Time: T-80 seconds
S-II Aft Skirt, Barrell section

OAFPL - 149.1 dB (Ref 2.9e-09 psi)

Freq SPL
(Sz) (dB)

50.0 125.6
63.0 127.6

80.0 130.6

100.0 132.6

125.0 134.1

160.0 136.1

200.0 136.6

250.0 136.6

315.0 136.6

400.0 135.6

500.0 136.6

630.0 142.1

800.0 140.6

1000.0 137.7

1250.0 137.7

1600.0 135.7

2000.0 134.7

2500.0 131.7

3150.0 128.7
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Saturn Acoustic Data from Apollo 13 (AS-508)

External Microphone: B0036-402, Time: T-79 seconds

Fwd end of S-II / S-IVB Interstage Skirt, Forward Facing Conic Frustrum

OAFPL - 150.8 dB (Ref 2.9e-09 psi)

Freq SPL

(Hz) (dB)
50.0 133.6

63.0 136.1

80.0 139.6

100.0 141.6

125.0 138.6

160.0 141.1

200.0 141.6

250 0 140.1

315 0 140.1

400 0 138.1

500 0 137.6

630 0 136.6

800 0 137.1

i000.0 137.1

1250.0 134.7

1600.0 131.7

2000.0 130.2

2500.0 129.7

3150.0 119.2

Saturn Acoustic Data from Apollo 13 (AS-508)

External Microphone: B0037-404, Time: T-79 seconds
Aft end of S-IVB Skirt, Cylinder Fwd of Frustrum

OAFPL - 147.3 dB (Ref 2.9e-09 psi)

Freq SPL

(Hz) (dB)
50.0 126.1

63.0 128.1

80.0 131.1

100 0 133.1

125 0 133.1

160 0 137.1

200 0 136.1

250 0 136.6

315 0 137.1

400 0 137.1

500 0 135.1

630 0 136.6

800 0 136.6

1000.0 136.1

1250.0 134.7

1600.0 131.7

2000.0 130.7

2500.0 130.2

3150.0 123.7



Saturn Acoustic Data from Apollo 13 (AS-508)
External Microphone: B0038-404, Time: T-79 seconds
Aft end of S-IVB Skirt, Cylinder Fwd of Frustrum
OAFPL- 148.3 dB (Ref 2.9e-09 psi)

Freq SPL

(Sz) (dB)
50.0 127.1

63.0 130.1

80.0 132.6

100.0 134.1

125.0 133.6

160.0 137.6

200.0 137 .i

250.0 138 .i

315.0 138.1

400.0 137.6

500.0 136.1

630.0 137.1

800.0 136.6

I000.0 137.1

1250.0 136.7

1600.0 133.7

2000.0 131.7

2500.0 130.2

3150.0 125.7

Saturn Acoustic Data from Apollo 13 (AS-508)

External Microphone: B0039-404, Time: T-79 seconds

Aft end of S-IVB Skirt, Cylinder Fwd of Frustrum

OAFPL - 153.1 dB (Ref 2.9e-09 psi)

Freq SPL

(Hz) (dB)
50.0 138.6

63.0 140.1

80.0 140.6

i00.0 142.1

125.0 140.6

160.0 143.1

200.0 142.6

250.0 142.1

315.0 141.1

400.0 142.6

500.0 139.6

630.0 140.1

800.0 139.1

i000.0 140.1

1250.0 139.7

1600.0 136.7

2000.0 136.7

2500.0 136.7

3150.0 130.7

Pa_e B-IO



Saturn Acoustic Data from Apollo 12 (AS-507)

External Microphone: B0029-402, Time: T-77 seconds

Aft end of S-II / S-IVB Interstage Skirt, Forward Facing Conic Frustrum

OAFPL - 147.5 dB (Ref 2.9e-09 psi)

Freq SPL
(Hz) (dB)

50.0 126.1

63.0 125.1

80.0 125.6

100.0 128.6

125.0 128.1

160.0 133 1

200.0 134 1

250.0 132 1

315.0 135 6

400.0 136 6

500.0 135 1

630.0 137 1

800.0 137 6

1000.0 137 6

1250.0 138 2

1600.0 136 7

2000.0 136 7

2500.0 135 2

3150.0 127 2

Saturn Acoustic Data from Apollo 12 (AS-507)

External Microphone: B0030-402, Time: T-77 seconds
Aft end of S-II / S-IVB Interstage Skirt, Forward Facing Conic Frustrum

OAFPL - 150.0 dB (Ref 2.9e-09 psi)

Freq SPL
(Hz) (dB)

50.0 131.6

63.0 134.6

80.0 136.1

100.0 138.6

125.0 138.6

160.0 140.1

200.0 140.1

250.0 136.1

315.0 138.6

400.0 139.6

500.0 137.1
630.0 138.6

800.0 138.6

1000.0 136.6

1250.0 135.7

1600.0 132.7

2000.0 134.7

2500.0 132.7

3150.0 126.2



Saturn Acoustic Data from Apollo 12 (AS-507)

External Microphone: B0034-402, Time: T-77 seconds

Aft end of S-II / S-IVB Interstage Skirt, Forward Facing Conic Frustrum

OAFPL - 142.9 dB (Ref 2.9e-09 psi)

Freq SPL

(Sz) (dB)
50.0 126.1

63.0 125.6

80.0 126.1

100.0 130.6

125.0 128.1

160.0 131.1

200.0 131.6

250.0 130.1

315.0 131.1

400.0 132.1

500.0 128.6

630.0 132.6

800.0 131.6

1000.0 130.6

1250.0 129.7

1600.0 128.7

2000.0 131.2

2500.0 130.2

3150.0 126.2

Saturn Acoustic Data from Apollo 12 (AS-507)

External Microphone: B0035-402, Time: T-77 seconds

Aft end of S-II / S-IVB Interstage Skirt, Forward Facing Conic Frustrum

OAFPL - 150.1 dB (Ref 2.9e-09 psi)

Freq SPL
(Sz) (dB)
50.0 131.6

63.0 133.1

80.0 136.1

i00.0 138.1

125.0 137.6

160.0 140.1

200.0 140.6

250.0 138.6

315.0 139.6

400.0 139.1

500.0 136.1

630.0 137 6

800.0 138 1

1000.0 137 6

1250.0 137 7

1600.0 133 7

2000.0 135 2

2500.0 133 2

3150.0 126.2



Saturn Acoustic Data from Apollo 12 (AS-507)

External Microphone: B0036-402, Time: T-77 seconds

Fwd end of S-II / S-IVB Interstage Skirt, Forward Facing Conic Frustrum

OAFPL - 152.4 dB (Ref 2.9e-09 psi)

Freq SPL

(Hz) (dB)

50.0 136.6

63.0 138.6

80.0 140.6

i00.0 142.1

125.0 140.6

160.0 142.6

200.0 143.1

250.0 140.1

315.0 140.1

400.0 140.1

500.0 138.6

630.0 140.1

800.0 140.I

1000.0 139.1
1250.0 139.2

1600.0 133.7

2000.0 135.2

2500.0 133.2

3150.0 126.2

Saturn Acoustic Data from Apollo 12 (AS-507)

External Microphone: B0037-404, Time: T-77 seconds

Aft end of S-IVB Aft Skirt, Cylinder Fwd of Frustrum

OAFPL - 146.6 dB (Ref 2.9e-09 psi)

Freq SPL
(Hz) (dB)

50.0 127.6

63.0 130.1

80.0 133.6

i00.0 133.6

125.0 131 6

160.0 134 6

200.0 135 1

250.0 134 6

315.0 133 6

400.0 133 6

500.0 130 1

630.0 131 6

800.0 132 6

I000.0 133 6

1250.0 137 7

1600.0 132 2

2000.0 133 2

2500.0 138 7

3150.0 128.7



Saturn Acoustic Data from Apollo 12 (AS-507)

External Microphone: B0038-404, Time: T-77 seconds

Aft end of S-IVB Skirt, Cylinder Fwd of Frustrum

OAFPL - 149.7 dB (Ref 2.9e-09 psi)

Freq SPL

(Sz) (dB)
50.0 131.1

63.0 131.6

80.0 135.1

i00.0 135.6

125.0 133.6

160.0 138.6

200.0 140.I

250.0 139.6

315.0 139.1

400.0 139.1

500.0 136.1

630.0 137.1

800.0 138.1

1000.0 138.6

1250.0 137.2

1600.0 134.7

2000.0 135.7

2500.0 135.7

3150.0 125.7

Saturn Acoustic Data from Apollo 12 (AS-507)

External Microphone: B0039-404, Time: T-77 seconds

Aft end of S-IVB Skirt, Cylinder Fwd of Frustrum

OAFPL - 151.0 dB (Ref 2.9e-09 psi)

Freq SPL
(Hz) (dB)
50.0 134.6

63.0 136.1

80.0 137.1

i00.0 138.1

125.0 138.1

160.0 142.6

200.0 143 1

250.0 140 1

315.0 140 1

400.0 139 6

500.0 137 6

630.0 137 1

800.0 137 1

I000.0 136 6

1250.0 136 2

1600.0 133.2

2000.0 134.7

2500.0 134.7

3150.0 126.2



Saturn Acoustic Data from Apollo 13 (AS-508)

External Microphone: B0028-402, Time: T-82 seconds

Aft end of S-II / S-IVB Interstage Skirt, Forward Facing Conic Frustrum

OAFPL - 144.1 dB (Ref 2.9e-09 psi)

Freq SPL

(Hz) (dB)
50.0 120.6

63.0 123.1

80.0 126.1

i00.0 130.6

125.0 130.6

160.0 134.1

200.0 136.1

250.0 136.1

315.0 135.6

400.0 132.1

500.0 130.1

630.0 130.6

800.0 130.6

1000 0 130.1

1250 0 128.7

1600 0 127.7

2000 0 127.7

2500 0 125.7

3150 0 118.7

Saturn Acoustic Data from Apollo 13 (AS-508)

External Microphone: B0029-402, Time: T-82 seconds
Aft end of S-II / S-IVB Interstage Skirt, Forward Facing Conic Frustrum

OAFPL - 150.1 dB (Ref 2.9e-09 psi)

Freq SPL
(Hz) (dB)

50.0 128.6

63.0 131.6

80.0 135.6

i00.0 137.6

125.0 137.6

160.0 140.6

200.0 140.6

250.0 141.1

315.0 140.6

400.0 138.6

500.0 136.6

630.0 137.1

800.0 137.6

1000.0 135.1

1250.0 135.2

1600.0 135.7

2000.0 133.2

2500.0 132.7

3150.0 122.7



Saturn Acoustic Data from Apollo 13 (AS-508)

External Microphone: B0030-402, Time: T-82 seconds
Aft end of S-II / S-IVB Interstage Skirt, Forward Facing Conic Frustrum

OAFPL - 149.0 dB (Ref 2.9e-09 psi)

Freq SPL

(Hz) (dB)

50.0 130.1

63.0 131.6

80.0 134.1

100.0 135.6

125.0 137 1
160.0 139 1

200.0 139 6

250.0 139 6

315.0 138 6

400.0 13B 1

500.0 136 6

630.0 137 1

800.0 137.1

1000 0 135.6

1250 0 134.2

1600 0 132.2
2000 0 131.2

2500 0 129.7

3150 0 121.7

Saturn Acoustic Data from Apollo 13 (A5-508)

External Microphone: B0031-402, Time: T-82 seconds
Fwd end of S-II / S-IVB Interstage Skirt, Forward Facing Conic Frustrum

OAFPL - 145.1 dB (Ref 2.9e-09 psi)

Freq SPL
(Hz) (dB)

50.0 132.6

63.0 133.1

80.0 132.6

100.0 131.6

125.0 131 1

160.0 133 6

200.0 134 1

250.0 133 6

315.0 133 1

400.0 132 6

500.0 132 1
630.0 133.6

800.0 135.1

1000.0 134.1

1250.0 130.7

1600.0 128.7

2000.0 128.2

2500.0 126.2

3150.0 122.2



Saturn Acoustic Data from Apollo 13 (AS-508)

External Microphone: B0032-402, Time: T-82 seconds

Fwd end of S-II / S-IVB Interstage Skirt, Forward Facing Conic Frustrum

OAFPL - 138.6 dB (Ref 2.9e-09 psi)

Freq SPL

(Hz) (dB)
50.0 124.1

63.0 122.1

80.0 123.6

i00 0 123.1

125 0 120.6

160 0 123.6

200 0 125.1

250 0 126.6

315 0 126.6

400 0 126.6

500 0 127.1

630 0 129.6

800 0 130.1

I000.0 128 1

1250.0 126 7

1600.0 123 7

2000.0 123 7

2500.0 122 7

3150.0 118 7

Saturn Acoustic Data from Apollo 13 (AS-508)

External Microphone: B0033-402, Time: T-75 seconds
Aft end of S-II / S-IVB Interstage Skirt, Forward Facing Conic Frustrum

OAFPL - 144.2 dB (Ref 2.9e-09 psi)

Freq SPL

(Sz) (dB)

50.0 130.6

63.0 132.1

80.0 131.1

100.0 132.1

125.0 129.1

160.0 132.1

200.0 131.6

250.0 132.6

315.0 135.1

400.0 132.1

500.0 131.1

630.0 132.1

800.0 132.1

1000.0 131.6

1250.0 131.2

1600.0 130.2

2000.0 130.2

2500.0 127.7

3150.0 122.2

D... D I"T



Saturn Acoustic Data from Apollo 13 (AS-508)

External Microphone: B0034-402, Time: T-82 seconds

Aft end of S-II / S-IVB Interstage Skirt, Forward Facing Conic Frustrum

OAFPL - 144.3 dB (Ref 2.9e-09 psi)

Freq SPL

(Hz) (dB)
50.0 124.6

63.0 125.6

80.0 127.1

100.0 128.6

125.0 129.6

160.0 132.6

200.0 133.6

250.0 132.6

315.0 134 1

400.0 134 1

500.0 133 1

630.0 134 1

800.0 133 6

i000.0 132 6

1250.0 132 7

1600.0 129 7

2000.0 129 7

2500.0 127 7

3150.0 122 2

Saturn Acoustic Data from Apollo 13 (AS-508)

External Microphone: B0035-402, Time: T-75 seconds
Aft end of S-II / S-IVB Interstage Skirt, Forward Facing Conic Frustrum

OAFPL - 145.9 dB (Ref 2.9e-09 psi)

Freq SPL

(Hz) (dS)
50.0 127.6

63.0 129.1

80.0 132.1

100.0 134.6

125.0 131.6

160.0 134.6

200.0 135.6

250.0 135.6

315.0 136.1

400.0 136.1

500.0 134.1

630.0 135.1

800.0 133.6

1000.0 132.1

1250.0 131.7

1600.0 127.7

2000.0 128.2

2500.0 126.2

3150.0 123.2



8.3 Appendix C: NLS Launch Vehicle Information Used In Study

This appendix contains a compilation of the NLS physical properties

and tabulated trajectory information, as a means of providing a

convenient access to the data for future applications.



Time (sec)
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
6O
61
62
63
54
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
9O
91
92
93
94
95
96
97
98

Velocity (fps)
1,251
1,277
1,303
1,330
1,356
1,383
1,411
1,439
lm468
1,498
1,526.
1,559..
1,591
1,624
1,658
1,693
1,729
1,766
1,804
1,843
1,884
1,925
1,968
2,012
2,058
2,104
2,152
2,201
2,251
2.302
2,355
2,409
2,464
2,520
2,577
2,636
2,696
2,757
2,819
2,883
2,947
3,013
3,079

Altitude (It)
25,213
26,294
27,388
28,496
29,618
30,752
31,8.99
33,058
34,231
35j416
36,613
37,824

. 39,047

. 40,283
41,532 ,.
42,795
44,071
45,360

. 46,663
47,979
49,309
50,653
52,011
53,383
54,769
56,168
57,582
59,010
60,452
61,907
631377
64,860
66,357
67,868
69,393
70,930
72,482
74,047
75,626
77 18
78,823
80,441
82,072

3,146 83,716
3,213 85,372
3,282 87,040
3,351 88,720
3,420 90,411
3,490 92,113
3,561 93,826
3,632 95,548
3,703 97,281
3,775 99,023

.3,848 100,774
3,920 . 102,533

O (psf) Mach Number
798 1.180
802 1.210
804 1.240
805 1.271
806 1.302
806 1.334
805 1.367
803 1.401
801 1.437
798 1.473

1.511
1.550
1.589
1.630
1.67.1
1.714
1.762
1.810
1.860
1.91 0
1.961
2.013
2.064
2.116 ....
2.168
2.220
2.272
2.317
2.366
2.419

I 2.476
2.632
2.582
2.635
2.68,9
2.745
2.801
2.657
2.915
2.97..4
3.033
3.093
3.153
3.215
3.277
3.340
3.403
3.467
3.53.1
3.592
3.653
3.715
3.776

j 3.838
[ 3.899

794
790
784
778
770
762
756
749
741
732
721
709
697
683
668
652
635
614
596
578
583
547
529
512
495
479
463
447
431
416
401
387
373
359
345
332
319
306
294
282
270
258
247
236
225

NASA/MSFC August-1991 Reference Trajectory for HLLV (all STMEs working)



Time (sec)
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121

121.4
121.4
122
123
124
125
126

126.4
126.4
127
128
129
130
131

131.4
131.4
135
140

141.4
141.4
145
150
155.
160
165
170
175
180
185
190
195

i

200

Velocity (tps)
3_994
4,067
4,142
4,216
4,291
4,367
4,443
4,520
4,597
4,674
4,752
4,831
4,910
4,990
5,069
5,140
5,212
5,284
5,355
5,427
5,498
5,569
5,635
5,660
5,660
5,701

I 5,764
5,823
5,876
5,925
5,943
5,943
5,971
6,014
6,055
6,094
6,133
6,148
6,148
6,305
6,530
6,594
6,594
6,762
7,003
7,252
7,509
7,774
8,047
8,327
8,617
8,914
9,220
9,535
9,859

Altitude {fl)
104,301
106,076
107,859
109,649
111,446
113,250
115,O60
116,875
118,696
120,523
122,354

- 124,190
126,030
127,874
129,722
131,571
133,421
135,269
137,116
138,962
140,806
142,648

144,486
145,219
145,219
146,319
148,146
149,966
151,778
153,578
154,295
154,295
155,366
157,141
158,902"
1601649
162,381
163,070
163,070
169,168
177,352
179,685
179,685
185,211
192,755
199,996
206,946
2.13,618
220,024
226,179
232,098
237,795
243,287
248,591
253,724

O (psf)
215

Mach Numbe=
3.960

205 4.020
195 4.081
t86 4.141
177 4.202
169 4.263
161 4.325
154 4.387
146 4.449
139 4.512
133 4.575
127 4.638
121 4.701
115 4.764
109 4.826
104 4.881
99 4.936
94 4.991
89 5.046
85 5.101
80 5.155
76 5.209
72 5.259
71 5.278
71 5.278
69 5.310
65 5.359
62 5.404
59 5.444
56 5.481
54 5.495
54 5.495
53 5.515
50 5.548
47 5.581
45 5.613
42 5.653
42 5.670
42 5.670
35 5.842
28 6.103
26 6.181
26 6.181
22 6.388
18 6.693
15 7.017
12 7.358
10 7.718
8 8.098
7 I 8.490

6 t 8.940
5 1 9.358
4 ! 9.789
3 10.235
3 10.697

NASA/MSFC August-1991 Reference Trajectory for HLLV (all STMEs working)



Time[sec)
2O5
210
215
220
22O
225.
23O
235
24O
245
250
255
260
265
270
275
280
285

289.873
289.873

290
295
300
3O5

305.23
305.23

310
315
320

323.119
323.119

325
330
335
340
345

348.284

Velocity (Igs)
10,193
10,536
10,890
11,254
11,254
11,630
12,019
12,422
12,839
13,271
13,719
14,184
14,667
15,169
15,692
16,237
16,807
17,402
18,009
18,009
18,023
18,592

1 19,186
19,808
19,838

I 19,838
20,369
20,950
21,558
21,950
21,950
22,132
22,626
23,139
23,673
24,228
24,605

Altitude (ft)
. 258,707
263,559
268,302
272,958
272,958
277,546

.282,069
286,523
290,903
295,206
299,429
303,568
307,617
311,573
315,431
319,186
322,834
326,367
329,696
329,696
32,9,781
333,098
336,339
33,9,504
339,647
339,647
342,541
345,383
348,019
349,555
349,555
350,456
352,840
355,211
357,568

.359,908
361,435

Q (psf)
2

Mach Numbe=
11.176

2 11.676
2 12.200
1 12.731
1 12..731
1 13.156
1 13.596

0
0
0

14.052
14.523
15.012
15.358
15.718
16.096

0 16.493
0 16,910
0
0
.0

17.348
17.811
18.298

0 18.757
0 18.757
0 18.766
0 19.132
0 19.525
0 19.943
0 19.963

I 0 19,963
0 20.303
0 20.691
0 21.112
0 21.393
0 211393
0 21.510
0 21.829
0 22.163
0 22.514
0 22.883
0 23.099

NASA/MSFC August-1991 Reference Trajectory Ior HLLV (all STMEs working)



Time(sec)
0
0
1
2
3

Velocity(tDs)
0
0
17
34
51

Altitude
95
95
103
129
171

403

Q (psf)
0
0
0

3

Mach Numbei
0.001

12

0.001
0.015
0.030
0.045

4 68 231 5 0.060
5 86 308 8 0.076

104
7

7.615
7.615

8
9
10
11
12
13
14
15
16
17

17.615
17.615

18
19

0.092

20
21
22
23
24
25
26
27

3O

122 516 17 0.108
134 595 20 0.118
134 595 20 0.118
141 648 22 0.124
159 798 29 0.140
178 966 36 0.157
197 1,154

1,361
1,588
11634
2,100
2,386
2,693
2,892
2,892
3,021
3,370
3,740
4,131
4,544
4,979
5,437
5,917
6,420
6,946
7,496
8,070
8,667
9,289
9,562
9,562
12,026
13,500
13,500
15,950
20,1 64
24,651
29,410
34,425
37,553
37,553
39,720
45,584
52,071
59,1=..3
66,798

217
236
256
277
297
318
332
332
340

t 362
, 384

43 0.174

406
429
452
476
500
525
550

28 575
29 601

628
31

31.426
31.426

52 0.192
62 0.209
72 0.227
83 0.245
95 0.264
108 O.283
116
116

0.294
0.294

122 0.302
136 0.321
152 0.341
168 0.362
185 0.382
203 0.403
222 0.425
241 0.447
261 0.470
282 0.493
303 0.516
325 0.540

35
36.939

654
- 666

666
767
824
824
866
943

36.939
40
45
50 1,031
55 1,126
60 1,230
63 1,300
63 1,300
65 1,387
70 1,619
75 1,871
80 2,144
85 2,439

347 0.564
370 0.589
380 0.600
380 0.600

1 465 0.695
I 512 0.750
t 512 0.750
] 521 0.793
i

537 0.874
551 0.969
558 1.078

' 555 1.202
i 551 1.286
i 551 1.286
! 577 1.385

623 1.660
I 627 1.962
' 578 2.257I
' 507 2.554

NASA/MSFC August-1991 Reference Trajectory Ior 1.5 LV (all STMEs working)



Time(sec)
9O
95
100
105
110
115
120
125
130
131
131
135
136
136
140
145
146
146
150
155
160
165
170
175
180
185
190
195
2O0
205
210
215
220
225
.230
235
240
245
250

252.687
252.687

255
260
265
270
275
280
285
290
295
300
305
10

315
320

Velocity (ti_s)
2,756
3,096
3,459
3,844
4,253
4,686
5,144
5,627
6,138
6,243 ,
6,243
6,677
6,788
6,788
6,920
7,091 ,
7,126
7,126
7,269
7,452
7,642
7,839
81042
8,251
8,467
8,690
8,920
9,156
9,400
9,652
9,910
10,177
10,451
10,734
11,025
11,324
11,633
11,951
12,279
121459
12,459
12,620
12,975
13,342
13,721
14,112
14,517
14,936
15,369
15,818
16,283
16,766
17,268
17,790
18,333

Altitude (It}
74,976
83,661
92,835
102,480
112,583
123,133
134,118
145_530
157_366
159,783
159,783
169,629
172,137
172,137
182,118

.194,355
196,773
196,773
206,349
218,109
229,633
240,921
251,974
262,79O
273,370
283,712
293,816
303,681
313,307
322,693
331,837
340,740
349,401
357,818
365,992
373,921
381,606
389,045
396,237
400,000
400,000
403,184
409,886
416,342
422,547
428,497
434,187
439,614
444,771
449,656
454,261
458,581
462,612
466,346
469,777

Q (psf)
426

Mach Numbe=
2.852

348 3.1,64
279 3.494
217 3.823
165 4.156
125 4.506
93 4.867
69 5.245
51 5.660
48 5.750
48 5.750
39 6.188
36 6.3O7
36 6,307
26 6.508
18 6.795
16 6.856
16 6.856
12 7.114
8 7.467
5 7.845
3 8.282
2 8.693
1 9.128
1 9.578
0 9.830
0 10.090
0 10.144
0 t 10.180
0 10.231
0 10.244
0 10.204
0 10.191
0 10.201
0 10.086
0 9.935
0 9.830
0 9.762
0 9.626
0 9.483
0 9.483
0 9.380
0 9.205
0 9.084
0 9.007
0 8.966
0 8.956
0 8.973
0 9.014

i 0 9.079
. 0 9.164

0 9.270
0 9.396
0 9.542

l 0 9.708

NAS/VMSFC August-1991 Reference Trajectory for 1.5 LV (all STMEs working)



Time(sec)
325
330
335
340
345

347.673
347.673

350
355
360
365

369.543

Velocity(as)
18,900
19,491
20,110
20,759
21,441
21,820
21,820
22,072
22,632
23t216
23,826
24,405

Altitude (ft)
472,897
475,700
478,176
480,317
482,112
482,926
482,926
483,556
484,681
485,486
485,961
486,100

Q (psi)
0

Mach Numbel
9.895

0 10.103
0 10.333

0 I 10.s68
0 ' 10.869
0 11.031
0 11.031
0 11.135
0 11.374
0 11.637
0 11.923
0 12.207

NASNMSFC August-1991 Reference Trajectory tor 1.5 LV (all STMEs working)



NLS Vehicle Scaling Parameters

Thrust

ASRB

STME
i

Exit Velocity

ASRB

STME

Nozzle Diameter

ASRB

STME

Core Diameter
i

PLF Diameter

Effective Nozzle

Diameter

(mixing related)

ASRB

STME

Effective Exit Velocity

(power related)

ASRB

$TME

Areal Weights

PLF Adapter

Forward Skirt

Intertank Skirt

Aft Skirtand Prop Modue

I-ILLV

14,680,000 (N)

2,593,000 (N)
|

2673 (m/s)

4247 (m/s)

3.78 (m).

2.21 (m)

583,000 (Ib)

13,934 fit/s)

7.25 (n)

8.4 (m) 27.5 (ft)

5.I (rn) 16.6 fit)

II

3.78 (m)

4.42 (m)

1711 (m/s)

1529 (m/s)

94.9 (Pa)

93.9 (Pa)

160.4 (Pa)

182.4 (Pa)

17.76 (ft)

13,934 (fffs)

.013773 (psi)

.013624 (psi)

.023282 (psi)

.026476 (psi)

r'q.p¢".R




